People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mangler, Clemens
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Grain-Size-Dependent Plastic Behavior in Bulk Nanocrystalline FeAl
- 2023Interface effects on titanium growth on graphenecitations
- 2023Creation of Single Vacancies in hBN with Electron Irradiationcitations
- 2021The morphology of doubly-clamped graphene nanoribbons
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2012Radiation effects in bulk nanocrystalline FeAl alloycitations
- 2012Spinodal decomposition in (CaxBa1-x)(y)Fe4Sb12citations
- 2011Growth of nanosized chemically ordered domains in intermetallic FeAl made nanocrystalline by severe plastic deformationcitations
- 2011Three-Dimensional Analysis by Electron Diffraction Methods of Nanocrystalline Materialscitations
- 2011Thermally induced transition from a ferromagnetic to a paramagnetic state in nanocrystalline FeAl processed by high-pressure torsioncitations
- 2010Electron microscopy of severely deformed L12 intermetallicscitations
- 2010Quantitative local profile analysis of nanomaterials by electron diffractioncitations
- 2010Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsioncitations
- 2008TEM study of local disordering: a structural phase change induced by high-pressure torsioncitations
- 2004Nanostructures in L12-ordered Cu3Au processed by torsion under high pressurecitations
Places of action
Organizations | Location | People |
---|
article
Grain-Size-Dependent Plastic Behavior in Bulk Nanocrystalline FeAl
Abstract
<p>While the deformation behavior of nanocrystalline ductile metals and alloys is extensively studied, there is little understanding for brittle intermetallic alloys with very small grain sizes. Herein, B2-ordered FeAl with different grain sizes is produced and deformed by high-pressure torsion. At a grain size of 120 nm, conventional dislocation processes remain dominant, resulting in a disordered saturation structure with highly defected grains of around 100 nm. The situation is different for an initial grain size of 30 nm; grain-boundary-mediated processes appear along with dislocation processes and deformation shows a tendency toward extreme localization in the form of thin bands. Interestingly, the saturation structure is not reached after severe plastic deformation. The nanocrystals remain ordered with a grain size of 30 nm; only within the deformation bands, some degree of disordering and an increase of the dislocation density are revealed by profile analysis using selected electron diffraction. This result demonstrates an extreme stability of ordered FeAl at very small grain sizes, and indicates that the deformation behavior in brittle intermetallics can strongly depend on the grain size.</p>