Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yazdani, Arash

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Mechanical Properties of an Ultrahard In Situ Amorphous Steel Matrix Compositecitations

Places of action

Chart of shared publication
Borjaurby, Raúl
1 / 1 shared
Dewitt, Darren
1 / 1 shared
Kisailus, David
1 / 2 shared
Garay, Javier E.
1 / 4 shared
Graeve, Olivia
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Borjaurby, Raúl
  • Dewitt, Darren
  • Kisailus, David
  • Garay, Javier E.
  • Graeve, Olivia
OrganizationsLocationPeople

article

Mechanical Properties of an Ultrahard In Situ Amorphous Steel Matrix Composite

  • Borjaurby, Raúl
  • Dewitt, Darren
  • Yazdani, Arash
  • Kisailus, David
  • Garay, Javier E.
  • Graeve, Olivia
Abstract

<jats:p>We report compression tests on micropillars manufactured from bulk specimens of partially devitrified SAM2×5 (Fe<jats:sub>49.7</jats:sub>Cr<jats:sub>17.7</jats:sub>Mn<jats:sub>1.9</jats:sub>Mo<jats:sub>7.4</jats:sub>W<jats:sub>1.6</jats:sub>B<jats:sub>15.2</jats:sub>C<jats:sub>3.8</jats:sub>Si<jats:sub>2.4</jats:sub>). Yield strength values of ≈6 GPa are obtained. Such a high strength can be attributed to the higher glass transition temperature (883 K) of this material, which impedes the multiplication of shear bands under loading, and to the presence of hard crystalline domains that result from devitrification of the amorphous powders during powder consolidation. The Vickers hardness of the specimens is found to be strongly correlated to the processing temperature and, hence to the volume of crystalline phases present in the specimens. As the processing temperature is increased, there is a reduction in free volume from the structural relaxation process in the amorphous alloy, leading to the eventual nucleation of crystalline phases of BCC Fe, Cr<jats:sub>2</jats:sub>B, Cr<jats:sub>21.30</jats:sub>Fe<jats:sub>1.7</jats:sub>C<jats:sub>6</jats:sub>, or Fe<jats:sub>23</jats:sub>B<jats:sub>2</jats:sub>C<jats:sub>4</jats:sub>, during the densification process. These results shed light on the relationship between nanocrystalline domains and the mechanical behavior of Fe‐based amorphous/crystalline composites.</jats:p>

Topics
  • impedance spectroscopy
  • amorphous
  • crystalline phase
  • glass
  • glass
  • strength
  • steel
  • composite
  • hardness
  • glass transition temperature
  • compression test
  • yield strength
  • densification