Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Reiter, Marco

  • Google
  • 1
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Observing High‐Cycle Fatigue Damage in Freestanding Gold Thin Films with Bulge Testing and Intermittent Transmission Electron Microscopy Imaging2citations

Places of action

Chart of shared publication
Merle, Benoit
1 / 87 shared
Lassnig, Alice
1 / 8 shared
Göken, Mathias
1 / 350 shared
Gebhart, David
1 / 2 shared
Krapf, Anna
1 / 8 shared
Cordill, Megan J.
1 / 12 shared
Gammer, Christoph
1 / 40 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Merle, Benoit
  • Lassnig, Alice
  • Göken, Mathias
  • Gebhart, David
  • Krapf, Anna
  • Cordill, Megan J.
  • Gammer, Christoph
OrganizationsLocationPeople

article

Observing High‐Cycle Fatigue Damage in Freestanding Gold Thin Films with Bulge Testing and Intermittent Transmission Electron Microscopy Imaging

  • Merle, Benoit
  • Lassnig, Alice
  • Göken, Mathias
  • Reiter, Marco
  • Gebhart, David
  • Krapf, Anna
  • Cordill, Megan J.
  • Gammer, Christoph
Abstract

<jats:p> Bulge testing is a potent technique for measuring the mechanical properties of freestanding thin films, but in situ imaging is only possible in limited experimental configurations. This poses a serious limitation for unraveling nanoscale failure mechanisms, such as the deformation mechanisms induced by cyclic loading in freestanding gold thin films of 150 nm thickness. Herein, a new experimental workflow combining standalone bulge cyclic testing with intermittent high‐resolution imaging by transmission electron microscopy (TEM) at specific positions of interest is introduced. The observed low dislocation activity in planar areas of the thin films is consistent with the slow strain accumulation during high‐cycle fatigue testing. In contrast, notches in the films lead to localized plasticity with sustained dislocation activity, but also grain growth and subgrain formation. At a more advanced stage, cracks proceed along grain boundaries, with crack bridging seemingly slowing down their propagation. The presented setup can be used with a number of TEM‐based characterization techniques and has the potential to reveal cyclic deformation mechanisms in several thin‐film systems.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • thin film
  • gold
  • crack
  • fatigue
  • transmission electron microscopy
  • dislocation
  • plasticity
  • deformation mechanism
  • fatigue testing
  • grain growth