Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shtefan, Viktoriia

  • Google
  • 6
  • 26
  • 13

National Technical University "Kharkiv Polytechnic Institute"

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Electrochemical Surface Nanostructuring of Ti<sub>47</sub>Cu<sub>38</sub>Fe<sub>2.5</sub>Zr<sub>7.5</sub>Sn<sub>2</sub>Si<sub>1</sub>Ag<sub>2</sub> Metallic Glass for Improved Pitting Corrosion Resistance6citations
  • 2024Acid Treatments of Ti-Based Metallic Glasses for Improving Corrosion Resistance in Implant Applicationscitations
  • 2024Tailoring microstructure and properties of CuZrAl(Nb) metallic-glass–crystal composites and nanocrystalline alloys obtained by flash-annealing5citations
  • 2022INFLUENCE OF CURRENT DENSITY ON THE PROCESS OF FORMATION OF OXIDE COATING ON ZIRCONIUM ALLOY E110citations
  • 2022Assessment of the corrosion resistance of the main alternative materials for light water reactors tolerant fuel rod cladding2citations
  • 2015Electrolyte for anodizing titanium alloyscitations

Places of action

Chart of shared publication
Pérez, Nicolás
1 / 6 shared
Tiwari, Kirti
1 / 2 shared
Gebert, Annett
2 / 43 shared
Querebillo, Christine Joy
1 / 1 shared
Zimmermann, Martina
1 / 162 shared
Navas, Nora Fernández
1 / 2 shared
Hantusch, Martin
2 / 12 shared
Rizzi, Paola
1 / 20 shared
Fernández-Navas, Nora
1 / 1 shared
Nielsch, Kornelius
1 / 56 shared
Song, Kaikai
1 / 2 shared
Kaban, Ivan
1 / 29 shared
Zimmermann, Martin V.
1 / 9 shared
Eckert, Jürgen
1 / 1035 shared
Han, Xiaoliang
1 / 13 shared
Orava, Jiri
1 / 8 shared
Das, Saurabh Mohan
1 / 4 shared
Herbig, Michael
1 / 21 shared
Dykyy, Ivan
1 / 1 shared
Kushtym, Yana
1 / 1 shared
Rostova, Hanna
1 / 2 shared
Tretyakov, Mykhaylo
1 / 1 shared
Shevchenko, Igor
1 / 1 shared
Zuyok, Valeriy
1 / 2 shared
Rud, Roman
1 / 1 shared
Rud, Nataliya
1 / 1 shared
Chart of publication period
2024
2022
2015

Co-Authors (by relevance)

  • Pérez, Nicolás
  • Tiwari, Kirti
  • Gebert, Annett
  • Querebillo, Christine Joy
  • Zimmermann, Martina
  • Navas, Nora Fernández
  • Hantusch, Martin
  • Rizzi, Paola
  • Fernández-Navas, Nora
  • Nielsch, Kornelius
  • Song, Kaikai
  • Kaban, Ivan
  • Zimmermann, Martin V.
  • Eckert, Jürgen
  • Han, Xiaoliang
  • Orava, Jiri
  • Das, Saurabh Mohan
  • Herbig, Michael
  • Dykyy, Ivan
  • Kushtym, Yana
  • Rostova, Hanna
  • Tretyakov, Mykhaylo
  • Shevchenko, Igor
  • Zuyok, Valeriy
  • Rud, Roman
  • Rud, Nataliya
OrganizationsLocationPeople

article

Electrochemical Surface Nanostructuring of Ti<sub>47</sub>Cu<sub>38</sub>Fe<sub>2.5</sub>Zr<sub>7.5</sub>Sn<sub>2</sub>Si<sub>1</sub>Ag<sub>2</sub> Metallic Glass for Improved Pitting Corrosion Resistance

  • Pérez, Nicolás
  • Tiwari, Kirti
  • Gebert, Annett
  • Querebillo, Christine Joy
  • Shtefan, Viktoriia
  • Zimmermann, Martina
  • Navas, Nora Fernández
  • Hantusch, Martin
  • Rizzi, Paola
Abstract

<jats:p>Ti‐based bulk metallic glasses are envisioned for human implant applications. Yet, while their elevated Cu content is essential for a high glass‐forming ability, it poses biocompatibility issues, necessitating a reduction in near‐surface regions. To address this, surface treatments that simultaneously generate protective and bioactive states, based on nanostructured Ti and Zr‐oxide layers are proposed. An electrochemical pseudo‐dealloying process using the bulk glass‐forming Ti<jats:sub>47</jats:sub>Cu<jats:sub>38</jats:sub>Fe<jats:sub>2.5</jats:sub>Zr<jats:sub>7.5</jats:sub>Sn<jats:sub>2</jats:sub>Si<jats:sub>1</jats:sub>Ag<jats:sub>2</jats:sub> alloy is defined. Melt‐spun ribbons are immersed in hot concentrated nitric acid solution, monitoring the anodic polarization behavior. From the current density transient measurements, together with surface studies (field‐emission scanning electron microscopy, transmission electron microscopy, and Auger electron spectroscopy), the surface reactions are described. This nanostructuring process is divided into three stages: passivation, Cu dissolution, and slow oxide growth, leading to homogenous nanoporous and ligament structures. By tuning the applied potential, the pore and ligament sizes, and thickness values are adjusted. According to X‐ray photoelectron spectroscopy, these nanoporous structures are Ti and Zr‐oxides rich in hydrous and nonhydrous states. In a simulated physiological solution, for those treated glassy alloy samples, complete suppression of chloride‐induced pitting corrosion in the anodic regime of water stability is achieved. This high corrosion resistance is similar to that of clinically used cp‐Ti.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • scanning electron microscopy
  • melt
  • glass
  • glass
  • pitting corrosion
  • transmission electron microscopy
  • forming
  • current density
  • photoelectron spectroscopy
  • biocompatibility
  • Auger electron spectroscopy