Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wang, Jin

  • Google
  • 4
  • 21
  • 13

Forschungszentrum Jülich

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Microstructure Characterization and Mechanical Properties of Polymer‐Derived (HfₓTa₁₋ₓ)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sinteringcitations
  • 2024Microstructure Characterization and Mechanical Properties of Polymer‐Derived (Hf<sub><i>x</i></sub>Ta<sub>1−<i>x</i></sub>)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering4citations
  • 2024The effect of grain boundaries and precipitates on the mechanical behavior of the refractory compositionally complex alloy NbMoCrTiAl1citations
  • 2021Mechanosynthesis of polymer-stabilized lead bromide perovskites: Insight into the formation and phase conversion of nanoparticles8citations

Places of action

Chart of shared publication
Schwaiger, Ruth
3 / 25 shared
Pundt, Astrid
2 / 26 shared
Riedel, Ralf
2 / 33 shared
Beck, Katharina
2 / 8 shared
Bernauer, Jan
2 / 11 shared
Petry, Nilschristian
2 / 4 shared
Kolb, Ute
2 / 21 shared
Thor, Nathalie
2 / 7 shared
Winkens, Georg
2 / 5 shared
Lepple, Maren
2 / 10 shared
Heilmaier, Martin
1 / 247 shared
Kauffmann, Alexander
1 / 53 shared
Basu, Silva
1 / 1 shared
Hubner, Rene
1 / 2 shared
Wei, Wei
1 / 7 shared
Erdem, Onur
1 / 3 shared
Fan, Xuelin
1 / 1 shared
Demir, Hilmi Volkan
1 / 7 shared
Georgi, Maximilian
1 / 4 shared
Jiang, Guocan
1 / 3 shared
Gaponik, Nikolai P.
1 / 6 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Schwaiger, Ruth
  • Pundt, Astrid
  • Riedel, Ralf
  • Beck, Katharina
  • Bernauer, Jan
  • Petry, Nilschristian
  • Kolb, Ute
  • Thor, Nathalie
  • Winkens, Georg
  • Lepple, Maren
  • Heilmaier, Martin
  • Kauffmann, Alexander
  • Basu, Silva
  • Hubner, Rene
  • Wei, Wei
  • Erdem, Onur
  • Fan, Xuelin
  • Demir, Hilmi Volkan
  • Georgi, Maximilian
  • Jiang, Guocan
  • Gaponik, Nikolai P.
OrganizationsLocationPeople

article

Microstructure Characterization and Mechanical Properties of Polymer‐Derived (Hf<sub><i>x</i></sub>Ta<sub>1−<i>x</i></sub>)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering

  • Schwaiger, Ruth
  • Pundt, Astrid
  • Riedel, Ralf
  • Beck, Katharina
  • Wang, Jin
  • Bernauer, Jan
  • Petry, Nilschristian
  • Kolb, Ute
  • Thor, Nathalie
  • Winkens, Georg
  • Lepple, Maren
Abstract

<jats:p>The high‐temperature microstructural evolution and mechanical properties of two SiC‐based polymer‐derived ceramics with different Hf:Ta molar ratios are investigated using electron microscopy techniques and manipulated by nanoindentation. The as‐pyrolyzed ceramic powder consists of an amorphous Si(Hf<jats:sub><jats:italic>x</jats:italic></jats:sub>Ta<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>)C(N,O) structure (where <jats:italic>x</jats:italic> = 0.2, 0.7) with localized nanocrystalline transition metal carbides (TMCs). Subsequent application of the field‐assisted sintering technique (FAST) for high‐temperature consolidation results in a crystalline (Hf<jats:sub><jats:italic>x</jats:italic></jats:sub>Ta<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>)C/SiC ultra‐high temperature ceramic nanocomposite. The microstructure contains powder particle‐sized grains and sinter necks between the former powder particles. The powder particles consist of a β‐SiC matrix and small TMCs. Large TMCs are observed on the internal surfaces of former powder particles. This is due to the pulsed direct current and the resulting Joule heating that facilitates diffusion as well as oxygen impurities. Sinter necks of large β‐SiC grains form during the FAST process. The microstructural regions are assessed using high‐throughput nanoindentation. The hardness for SiC/(Hf<jats:sub>0.7</jats:sub>Ta<jats:sub>0.3</jats:sub>)C is measured on the formed grains and the sinter necks giving mean hardness values of about 27 and 37 GPa, respectively.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • polymer
  • amorphous
  • grain
  • Oxygen
  • carbide
  • hardness
  • nanoindentation
  • electron microscopy
  • sintering