Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bulavskiy, Mikhail O.

  • Google
  • 1
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Approaching Technological Limit for Wet‐Pulling Technique3citations

Places of action

Chart of shared publication
Krasnikov, Dmitry V.
1 / 8 shared
Shandakov, Sergey D.
1 / 5 shared
Chetyrkina, Margarita R.
1 / 1 shared
Butt, Hassaan Ahmad
1 / 4 shared
Fedorov, Fedor S.
1 / 3 shared
Mikladal, Bjørn
1 / 3 shared
Zhilyaeva, Maria A.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Krasnikov, Dmitry V.
  • Shandakov, Sergey D.
  • Chetyrkina, Margarita R.
  • Butt, Hassaan Ahmad
  • Fedorov, Fedor S.
  • Mikladal, Bjørn
  • Zhilyaeva, Maria A.
OrganizationsLocationPeople

article

Approaching Technological Limit for Wet‐Pulling Technique

  • Krasnikov, Dmitry V.
  • Shandakov, Sergey D.
  • Chetyrkina, Margarita R.
  • Butt, Hassaan Ahmad
  • Fedorov, Fedor S.
  • Mikladal, Bjørn
  • Bulavskiy, Mikhail O.
  • Zhilyaeva, Maria A.
Abstract

<jats:p>Carbon nanotube fibers (CNTFs) are a promising economical replacement material for contemporary metallic wired conductors due to their lightweight and advanced electromechanical properties. The wet‐pulling technique for CNTF manufacturing is highly versatile, adaptable for both laboratory as well as industrial‐scale production, and can be optimized for the maximum enhancement of electrophysical properties. Herein, a mechanosolvent‐based postfabrication approach for maximizing densification and improving electrical properties of wet‐pulled CNTFs is examined. The experimental process results in fibers achieving 60% of the theoretically maximum density and conductivity of maximally densified metallic single‐walled carbon nanotube bundles. The technique allows a corresponding increase of ≈700% in fiber density (from 100 to 704 kg m<jats:sup>−3</jats:sup>), a simultaneous ≈530% increase in electrical conductivity (from 748 to 3990 S cm<jats:sup>−1</jats:sup>), and reduced volume defects from 18% to 2%. The approach was combined with a step‐wise microstructure monitoring using focused ion beam–scanning electron microscopy to determine the mechanisms behind the optimized structures. This work is the first to provide an experimental and theoretical base for the postfabrication optimization of wet‐pulled CNTFs and lays the foundation for further enhancement with techniques such as chemical doping, fiber compounding, and combined infiltration/densification mechanisms.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • Carbon
  • scanning electron microscopy
  • nanotube
  • focused ion beam
  • defect
  • electrical conductivity
  • densification