Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pacáková, Barbara

  • Google
  • 1
  • 6
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Classifying Tensile Loading History of Continuous Carbon Fiber Composites Using X‐Ray Scattering and Machine Learning1citations

Places of action

Chart of shared publication
Balzano, Luigi
1 / 2 shared
Knaapila, Matti
1 / 21 shared
Fossum, Jon Otto
1 / 3 shared
Kanters, Marc
1 / 1 shared
Demchenko, Hanna
1 / 2 shared
Sexton, Alexander Harold
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Balzano, Luigi
  • Knaapila, Matti
  • Fossum, Jon Otto
  • Kanters, Marc
  • Demchenko, Hanna
  • Sexton, Alexander Harold
OrganizationsLocationPeople

article

Classifying Tensile Loading History of Continuous Carbon Fiber Composites Using X‐Ray Scattering and Machine Learning

  • Balzano, Luigi
  • Pacáková, Barbara
  • Knaapila, Matti
  • Fossum, Jon Otto
  • Kanters, Marc
  • Demchenko, Hanna
  • Sexton, Alexander Harold
Abstract

<jats:p>The tensile loading history of continuous carbon fiber composites is classified using machine learning (ML) and crystallographic data from the polymer matrix. Composites with polyamide‐4,10 matrix and unidirectional 10° and 45°, and 0°/90° cross‐ply layups are subjected to single‐cycle uniaxial tensile loads corresponding to 25–90% of their nominal maximum strain, and mapped by X‐ray diffraction with approximately 1000 data points from each layup. The unit cell alterations are used as a feature set for optimizing three ML algorithms; linear discriminant analysis, support vector machines (SVM), and gradient‐boosted decision trees (GBDT), with the objective of predicting five discrete loading magnitudes of the respective layups. It is demonstrated that SVMs and GBDTs can be trained to achieve a classification accuracy of &gt;90% on unseen test data, both in cases where the feature set consists of data points from individual layups only, but also when data from the three layups are aggregated. The performance of the models is also shown to be similar to a binary problem, in which the composites are categorized according to a threshold load.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • composite
  • machine learning