People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barcikowski, Stephan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Influence of Colloidal Additivation with Surfactant‐Free Laser‐Generated Metal Nanoparticles on the Microstructure of Suction‐Cast Nd–Fe–B Alloy
- 2023Influence of Colloidal Additivation with Surfactant‐Free Laser‐Generated Metal Nanoparticles on the Microstructure of Suction‐Cast Nd–Fe–B Alloycitations
- 2023In-situ monitoring of the material composition in PBF-LB via optical emission spectroscopycitations
- 2022Nanocomposite Concept for Electrochemical In Situ Preparation of Pt–Au Alloy Nanoparticles for Formic Acid Oxidationcitations
- 2022Nanocomposite Concept for Electrochemical in Situ Preparation of Pt-Au Alloy Nanoparticles for Formic Acid Oxidationcitations
- 2021Single-Particle Hyperspectral Imaging Reveals Kinetics of Silver Ion Leaching from Alloy Nanoparticlescitations
- 2021Nanoparticle Additivation Effects on Laser Powder Bed Fusion of Metals and Polymers: A Theoretical Concept for an Inter-Laboratory Study Design All Along the Process Chain, Including Research Data Managementcitations
- 2021Comparing the activity of complex solid solution electrocatalysts using inflection points of voltammetric activity curves as activity descriptorscitations
- 2021Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powderscitations
- 2020Picosecond laser-induced surface structures on alloys in liquids and their influence on nanoparticle productivity during laser ablationcitations
- 2019Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticlescitations
- 2011Wear analysis of fine-structured surfaces made using a single-step laser cladding process
- 2010Biocompability of nanoactuatorscitations
- 2010Biocompability of nanoactuators : stem cell growth on laser-generated nickel-titanium shape memory alloy nanoparticles
- 2007Femtosecond laser microstructuring of hot-isostatically pressed zirconia ceramic
- 2005Microshaping of densely sintered zirconia ceramic using femtosecond lasers
Places of action
Organizations | Location | People |
---|
article
Influence of Colloidal Additivation with Surfactant‐Free Laser‐Generated Metal Nanoparticles on the Microstructure of Suction‐Cast Nd–Fe–B Alloy
Abstract
<jats:p> Development of new powder feedstocks using nanoparticles (NPs) has the potential to influence the microstructure of as‐built parts and overcome the limitations of current powder‐based additive manufacturing (AM) techniques. The focus of this study is to investigate the impact of NP‐modified magnetic microparticle powder feedstock on the microstructure of suction‐cast Nd–Fe–B‐based alloys. This particular casting method has been recognized for its ability to replicate, to some extent, the melting and rapid solidification stages inherent to metal powder‐based AM techniques such as powder bed fusion using a laser beam. Two types of NP materials, Ag and ZrB<jats:sub>2</jats:sub>, are used, and their effects on the grain size distribution and dendritic structures are evaluated after suction casting. Ag NPs result in smaller, more uniform grain sizes. ZrB<jats:sub>2</jats:sub> NPs result in uniformly distributed grain sizes at much lower mass loadings. The results show that feedstock powder surface modification with low‐melting‐point metal NPs can improve permanent magnets’ microstructure and magnetic properties, at below 1 vol%, equal to submonolayer surface loads. Herein, the potential of using NPs to develop new powder feedstocks for AM is highlighted, significantly improving the final part's properties.</jats:p>