People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Limmaneevichitr, Chaowalit
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023Microstructure, Hardening, and Mechanical Properties of Hypoeutectic Al–Ce–Ni Alloys with Zr and Zr + Sc Additions and the Effect of Ultrasonic Melt Processingcitations
- 2019Constitutive Behavior of an AA4032 Piston Alloy with Cu and Er Additions upon High-Temperature Compressive Deformationcitations
Places of action
Organizations | Location | People |
---|
article
Microstructure, Hardening, and Mechanical Properties of Hypoeutectic Al–Ce–Ni Alloys with Zr and Zr + Sc Additions and the Effect of Ultrasonic Melt Processing
Abstract
<jats:p>Ternary Al–Ce–Ni alloys have a potential in the manufacture of automotive and airspace components, as well as in replacing traditional aluminum alloys in high‐temperature applications, which is determined by the formation of fine and thermally stable Al<jats:sub>11</jats:sub>Ce<jats:sub>3</jats:sub> and Al<jats:sub>3</jats:sub>Ni eutectic. Herein, the microstructure and mechanical properties of a hypoeutectic Al<jats:sub>4</jats:sub>Ce<jats:sub>2</jats:sub>Ni alloy using Zr and Zr + Sc additions combined with ultrasonic melt processing and dispersion hardening are improved. As a result, the grain structure of the as‐cast alloys is significantly refined and the annealing at 350 °C leads to a considerable hardening effect, especially in the alloys with Zr + Sc additions (doubling the hardness). Al<jats:sub>3</jats:sub>Zr and Al<jats:sub>3</jats:sub>(Zr,Sc) coherent particles are identified as hardening nanoprecipitates. The compressive mechanical testing at room and elevated temperatures shows that the additions of Zr and Zr + Sc improve the strength with the additional increase caused by ultrasonic melt processing.</jats:p>