People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jezeršek, Matija
University of Ljubljana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Surface modification of magnetoactive elastomers by laser micromachiningcitations
- 2023Magnetically actuated surface microstructures for efficient transport and tunable separation of droplets and solidscitations
- 2022Microstructured Magnetoactive Elastomers for Switchable Wettabilitycitations
- 2022Adaptive Magneto-Responsive Surfaces Fabricated by Laser-Based Microstructuring
- 2021Remote fibre laser welding of advanced high strength martensitic steelcitations
Places of action
Organizations | Location | People |
---|
article
Magnetically actuated surface microstructures for efficient transport and tunable separation of droplets and solids
Abstract
Efficient transportation of droplets (≈10$^1$–10$^2$ μL) and small solid objects (≈10$^1$–10$^2$ mm$^3$) have important applications in many fields, such as microfluidics, lab-on-a-chip devices, drug delivery, etc. A novel multifunctional surface consisting of a periodic array of micro-lamellae from a soft magnetoactive elastomer on a plastic substrate is reported for these purposes. The physical origin of the propulsion is the bending of soft magnetic lamellae in nonuniform magnetic fields, which is also observed in uniform magnetic fields. The magnetoactive surface is fabricated using a facile and rapid method of laser ablation. The propulsion of items is realized using a four-pole rotating magnet. This results in a cyclic lamellar fringe motion over the microstructured surface and brings an advantage of easy reciprocation of transport by rotation reversal. Two modes of object transportation are identified: “pushing” mode for precise control of droplet and solid positioning and “bouncing” mode for heavier solid objects transportation. A water droplet of 5 μL or a glass sphere with a 2.1 mm diameter can be moved at a maximum speed of 60 mm s$^{–1}$. The multifunctionality of the proposed mechatronic platform is demonstrated on the examples of selective solid–liquid separation and droplet merging.