Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khan, Zaffar Muhammad

  • Google
  • 1
  • 2
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Additive Manufacturing of Flexible Strain Sensors Based on Smart Composites for Structural Health Monitoring with High Accuracy and Fidelity6citations

Places of action

Chart of shared publication
Bodaghi, Mahdi
1 / 46 shared
Nauman, Saad
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Bodaghi, Mahdi
  • Nauman, Saad
OrganizationsLocationPeople

article

Additive Manufacturing of Flexible Strain Sensors Based on Smart Composites for Structural Health Monitoring with High Accuracy and Fidelity

  • Bodaghi, Mahdi
  • Nauman, Saad
  • Khan, Zaffar Muhammad
Abstract

<jats:p>This research introduces a novel flexible spherical carbon nanoparticle‐based polyurethane conductive ink, which is employed to fabricate strain sensors by a lab‐developed direct ink writing/3D printing system. Rheological tests are performed, and sensors are pasted on glass fiber‐reinforced plastic specimens to study strain gauge behaviors under quasistatic loading. The gauge factor in tensile loading is found to be layer width dependent as decreasing the strain gauge's layer width increases the sensitivity of the strain sensor. A maximum gauge factor of 34 is achieved using a layer width of 0.2 mm, 17 times greater than commercially available metal foil strain gauges. The four‐point bend tests are performed under tension/compression to assess the sensor's strain‐sensing and damage‐monitoring ability. Fractographic analysis is coupled with strain monitoring using the developed sensor, which confirms that the failure progresses from intralaminar failure modes such as ply splitting in tension. At the same time, delamination leads to kink band formation under compression and the eventual failure of load‐bearing fibers. The developed sensor exhibits repeatable performance with low hysteresis and integrated nonlinearity errors for up to 1000 cycles. The developed sensors could be effectively employed for online in situ structural health monitoring of aerospace structures under static and dynamic loading.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • Carbon
  • glass
  • glass
  • composite
  • additive manufacturing