Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Islamgaliev, Rinat

  • Google
  • 1
  • 7
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Comparison of the Thermal Stability in Equal‐Channel‐Angular‐Pressed and High‐Pressure‐Torsion‐Processed Fe–21Cr–5Al Alloy5citations

Places of action

Chart of shared publication
Poplawsky, Jonathan
1 / 3 shared
Wen, Haiming
1 / 2 shared
Hoffman, Andrew
1 / 1 shared
Arivu, Maalavan
1 / 1 shared
Valiev, Ruslan
1 / 5 shared
Zhang, Xinchang
1 / 2 shared
Duan, Jiaqi
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Poplawsky, Jonathan
  • Wen, Haiming
  • Hoffman, Andrew
  • Arivu, Maalavan
  • Valiev, Ruslan
  • Zhang, Xinchang
  • Duan, Jiaqi
OrganizationsLocationPeople

article

Comparison of the Thermal Stability in Equal‐Channel‐Angular‐Pressed and High‐Pressure‐Torsion‐Processed Fe–21Cr–5Al Alloy

  • Poplawsky, Jonathan
  • Wen, Haiming
  • Hoffman, Andrew
  • Arivu, Maalavan
  • Valiev, Ruslan
  • Zhang, Xinchang
  • Islamgaliev, Rinat
  • Duan, Jiaqi
Abstract

<jats:p> Nanostructured steels are expected to have enhanced irradiation tolerance and improved strength. However, they suffer from poor microstructural stability at elevated temperatures. In this study, Fe–21Cr–5Al–0.026C (wt%) Kanthal D (KD) alloy belonging to a class of (FeCrAl) alloys considered for accident‐tolerant fuel cladding in light‐water reactors is nanostructured using two severe plastic deformation techniques of equal‐channel angular pressing (ECAP) and high‐pressure torsion (HPT), and their thermal stability between 500–700 °C is studied and compared. ECAP KD is found to be thermally stable up to 500 °C, whereas HPT KD is unstable at 500 °C. Microstructural characterization reveals that ECAP KD undergoes recovery at 550 °C and recrystallization above 600 °C, while HPT KD shows continuous grain growth after annealing above 500 °C. Enhanced thermal stability of ECAP KD is from significant fraction (&gt;50%) of low‐angle grain boundaries (GBs) (misorientation angle 2–15°) stabilizing the microstructure due to their low mobility. Small grain sizes, a high fraction (&gt;80%) of high‐angle GBs (misorientation angle &gt;15°) and accordingly a large amount of stored GB energy, serve as the driving force for HPT KD to undergo grain growth instead of recrystallization driven by excess stored strain energy.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • grain size
  • mobility
  • strength
  • steel
  • annealing
  • recrystallization
  • grain growth