People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jaskari, Matias
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Effect of surface characteristics on strain distribution in air- bending
- 2024Comparative Study of High-Cycle Fatigue and Failure Mechanisms in Ultrahigh-Strength CrNiMoWMnV Low-Alloy Steels
- 2023Microstructure and Fatigue Life of Surface Modified PBF-LB Manufactured Maraging Steel
- 2023Effect of Severe Shot Peening on Mechanical Properties and Fatigue Resistance of Wire Arc Additive Manufactured AISI 316Lcitations
- 2023The Effect of Laser Heat Treatment and Severe Shot Peening on Laser Powder Bed Fusion Manufactured AISI 316L Stainless Steel
- 2023Effect of High-Temperature Tempering on Microstructure and Mechanical Strength of Laser-Welded Joints between Medium-Mn Stainless Steel and High-Strength Carbon Steel
- 2023Fatigue Life and Impact Toughness of PBF-LB Manufactured Ti6Al4V and the Effect of Heat Treatment
- 2023Surface Roughness Improvement of PBF-LB Manufactured 316L with Dry Electropolishingcitations
- 2023High Temperature Heat Treatment and Severe Shot Peening of PBF-LB Manufactured 316L Stainless Steelcitations
- 2023The Outstanding Contribution of Basal Slip in Substructure Development during Friction Stir Processing of Magnesium Alloyscitations
- 2023Enhancement and underlying fatigue mechanisms of laser powder bed fusion additive-manufactured 316L stainless steelcitations
- 2022The effect of severe shot peening on fatigue life of laser powder bed fusion manufactured 316L stainless steelcitations
- 2021Evolution of magnetic properties during temperingcitations
Places of action
Organizations | Location | People |
---|
article
The Outstanding Contribution of Basal Slip in Substructure Development during Friction Stir Processing of Magnesium Alloys
Abstract
<jats:p>This research reveals the critical role of basal slip in the substructure development during friction stir processing of a magnesium alloy. In this respect, the intragranular lattice rotation axes are considered to identify the activity of different slip systems. The applied shear strain during the procedure is stored in the matrix through slip‐induced rotations at the grain level. The rotations around distinct Taylor axes produce “slip domains” separated by necessary boundaries from the parent grains, significantly contributing in grain refinement. The basal slip is easily activated in grains holding different stored energy; however, the nonbasal slip has a higher dependency on the amount of local applied strain. Determining the contribution of different slip systems in strain accommodation reveals that the basal slip imposes the highest fraction of low‐angle boundaries into the microstructure leading to the development of the ultimate grain boundary structure.</jats:p>