People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wahlmann, Benjamin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Thermo‐mechanical Study on Auxetic Shape Memory Periodic Open Cellular Structures—Part II: Mechanical and Shape Memory Propertiescitations
- 2024Experimental Validation of Property Models and Databases for Computational Superalloy Design
- 2023Using Selective Electron Beam Melting to Enhance the High-Temperature Strength and Creep Resistance of NiAl–28Cr–6Mo In Situ Compositescitations
- 2023MiniMelt: An instrument for real-time tracking of electron beam additive manufacturing using synchrotron x-ray techniquescitations
- 2023Numerical Design of CoNi-Base Superalloys With Improved Casting Structurecitations
- 2023Phase-Field Study of the History-Effect of Remelted Microstructures on Nucleation During Additive Manufacturing of Ni-Based Superalloyscitations
- 2022Revealing dynamic processes in laser powder bed fusion with in situ X-ray diffraction at PETRA IIIcitations
- 2021Numerical Alloy Development for Additive Manufacturing towards Reduced Cracking Susceptibilitycitations
- 2019Growth and coarsening kinetics of gamma prime precipitates in CMSX-4 under simulated additive manufacturing conditionscitations
Places of action
Organizations | Location | People |
---|
article
Using Selective Electron Beam Melting to Enhance the High-Temperature Strength and Creep Resistance of NiAl–28Cr–6Mo In Situ Composites
Abstract
<jats:p>By increasing the density of interfaces in NiAl–CrMo in situ composites, the mechanical properties can be significantly improved compared to conventionally cast material. The refined microstructure is achieved by manufacturing through electron beam powder bed fusion (PBF‐EB). By varying the process parameters, an equiaxed or columnar cell morphology can be obtained, exhibiting a plate‐like or an interconnected network of the (Cr,Mo) reinforcement phase which is embedded in a NiAl matrix. The microstructure of the different cell morphologies is investigated in detail using scanning electron microscope, transmission electron microscopy, and atom probe tomography. For both morphologies, the mechanical properties at elevated temperatures are analyzed by compression and creep experiments parallel and perpendicular to the building direction. In comparison to cast NiAl and NiAl–(Cr, Mo), the yield strength of the PBF‐EB fabricated specimens is significantly improved at temperatures up to 1,027 °C. While the columnar morphology exhibits the best improved mechanical properties at high temperatures, the equiaxial morphology shows nearly ideal isotropic mechanical behavior, which is a substantial advantage over directionally solidified material.</jats:p>