Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Trinchi, Adrian

  • Google
  • 7
  • 11
  • 268

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing88citations
  • 2023Embedding function within additively manufactured parts: Materials challenges and opportunities9citations
  • 2023Boron-induced microstructural manipulation of titanium and titanium alloys in additive manufacturing17citations
  • 2012Data-constrained microstructure modeling with multi-spectrum X-ray CT23citations
  • 2011A review of high throughput and combinatorial electrochemistry116citations
  • 2010Data-constrained microstructure modeling with multi-spectrum X-ray CT6citations
  • 2010Multilayered coatings: tuneable protection for metals9citations

Places of action

Chart of shared publication
Herzog, Tim
1 / 1 shared
Molotnikov, Andrey
1 / 7 shared
Brandt, Milan
1 / 16 shared
Tulloh, Andrew
1 / 1 shared
Yang, Sam
1 / 2 shared
Bradbury, Angela
2 / 3 shared
Lau, Deborah
2 / 4 shared
Dligatch, Svetlana
2 / 2 shared
Martin, Phil
2 / 10 shared
Cole, Ivan
1 / 25 shared
Furman, Scott
1 / 1 shared
Chart of publication period
2023
2012
2011
2010

Co-Authors (by relevance)

  • Herzog, Tim
  • Molotnikov, Andrey
  • Brandt, Milan
  • Tulloh, Andrew
  • Yang, Sam
  • Bradbury, Angela
  • Lau, Deborah
  • Dligatch, Svetlana
  • Martin, Phil
  • Cole, Ivan
  • Furman, Scott
OrganizationsLocationPeople

article

Embedding function within additively manufactured parts: Materials challenges and opportunities

  • Trinchi, Adrian
Abstract

As additive manufacturing (AM), particularly metal and polymer-based 3D printing, progresses from a scientific curiosity to an industry mainstay, there is an increasing desire for parts to take on secondary roles beyond their primary, typically structural or mechanical, function. This may enable unique and broad-ranging functional customization, including monitoring part performance or its local environment, provisions for unique identifiers in tracking, anticounterfeiting, quality control, and even product certification. Many materials and processing compatibility requirements must be addressed to achieve embedded function, as embedded fillers or additives must not compromise either the part's production or its primary function. Herein, the material, technological, and processing challenges are highlighted for embedding function into parts produced by some of the most popular AM techniques, with examples provided from the literature. While it is possible to produce cavities within 3D printed parts and place functional components within them postbuild, approaches, herein, specifically explore direct incorporation of functional agents, fillers, and additives during the build process that imparts ancillary function. It is hoped to inspire exploration of the possibilities and enhancements achievable through functional AM. On account of its versatility, binder jetting is analyzed as a case study, with novel approaches for embedding new functions outlined.

Topics
  • impedance spectroscopy
  • polymer
  • binder jetting