Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guth, Stefan

  • Google
  • 8
  • 29
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024The High Temperature Strength of Single Crystal Ni‐base Superalloys – Re‐visiting Constant Strain Rate, Creep, and Thermomechanical Fatigue Testingcitations
  • 2024The High Temperature Strength of Single Crystal Ni‐base Superalloys – Re‐visiting Constant Strain Rate, Creep, and Thermomechanical Fatigue Testingcitations
  • 2023Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting9citations
  • 2023Experimental Assessment and Micromechanical Modeling of Additively Manufactured Austenitic Steels under Cyclic Loading2citations
  • 2022Influence of a Thermo-Mechanical Treatment on the Fatigue Lifetime and Crack Initiation Behavior of a Quenched and Tempered Steelcitations
  • 2022Comparison of the Internal Fatigue Crack Initiation and Propagation Behavior of a Quenched and Tempered Steel with and without a Thermomechanical Treatment1citations
  • 2021Influence of Shot Peening on the Isothermal Fatigue Behavior of the Gamma Titanium Aluminide Ti-48Al-2Cr-2Nb at 750 °C9citations
  • 2020A New Method for Determining the Brittle-to-Ductile Transition Temperature of a TiAl Intermetallic6citations

Places of action

Chart of shared publication
Babinský, Tomás
2 / 2 shared
Sirrenberg, Marc
2 / 2 shared
Parsa, Alireza B.
2 / 3 shared
Eggeler, Gunther
2 / 193 shared
Bürger, David
2 / 4 shared
Mills, Michael J.
2 / 7 shared
Dlouhý, Antonin
2 / 2 shared
Thome, Pascal
1 / 2 shared
Kuntz, Daniel
1 / 1 shared
Šulák, Ivo
1 / 9 shared
Babinský, Tomáš
2 / 7 shared
Klein, Alexander
1 / 15 shared
Antusch, Steffen
1 / 21 shared
Logvinov, Ruslan
1 / 1 shared
Hartmaier, Alexander
1 / 54 shared
Biswas, Abhishek
1 / 27 shared
Shahmardani, Mahdieh
1 / 4 shared
Paul, Shubhadip
1 / 2 shared
Vajragupta, Napat
1 / 21 shared
Sippel, Jan
1 / 1 shared
Lang, Karl-Heinz
2 / 9 shared
Khayatzadeh, Amin
2 / 2 shared
Kerscher, Eberhard
1 / 6 shared
Heilmaier, Martin
3 / 247 shared
Gall, Elias
1 / 1 shared
Gibmeier, Jens
1 / 26 shared
Swadźba, Radosław
1 / 1 shared
Breuner, Christoph
1 / 1 shared
Nizamoglu, Sarper
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Babinský, Tomás
  • Sirrenberg, Marc
  • Parsa, Alireza B.
  • Eggeler, Gunther
  • Bürger, David
  • Mills, Michael J.
  • Dlouhý, Antonin
  • Thome, Pascal
  • Kuntz, Daniel
  • Šulák, Ivo
  • Babinský, Tomáš
  • Klein, Alexander
  • Antusch, Steffen
  • Logvinov, Ruslan
  • Hartmaier, Alexander
  • Biswas, Abhishek
  • Shahmardani, Mahdieh
  • Paul, Shubhadip
  • Vajragupta, Napat
  • Sippel, Jan
  • Lang, Karl-Heinz
  • Khayatzadeh, Amin
  • Kerscher, Eberhard
  • Heilmaier, Martin
  • Gall, Elias
  • Gibmeier, Jens
  • Swadźba, Radosław
  • Breuner, Christoph
  • Nizamoglu, Sarper
OrganizationsLocationPeople

article

Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting

  • Kuntz, Daniel
  • Guth, Stefan
  • Šulák, Ivo
  • Babinský, Tomáš
  • Klein, Alexander
  • Antusch, Steffen
Abstract

<jats:p>Electron beam melting of Ni‐base superalloy Inconel 718 allows producing a columnar‐grained microstructure with a pronounced texture, which offers exceptional resistance against high‐temperature loading with severe creep–fatigue interaction arising in components of aircraft jet engines. This study considers the deformation, damage, and lifetime behavior of electron‐beam‐melted Inconel 718 under in‐phase thermomechanical fatigue loading with varying amounts of creep–fatigue interaction. Strain‐controlled thermomechanical fatigue tests with equal‐ramp cycles, slow–fast cycles, and dwell time cycles are conducted in the temperature range from 300 to 650 °C. Results show that both dwell time and slow–fast cycles promote intergranular cracking, gradual tensile stress relaxation, as well as precipitate dissolution and coarsening giving rise to cyclic softening. The interplay of these mechanisms leads to increased lifetimes in both dwell time and slow–fast tests compared to equal ramp tests at higher strain amplitudes. Conversely, at lower mechanical strain amplitudes, the opposite is observed. A comparison with results of conventional Inconel 718 indicates that the electron‐beam‐melted material exhibits superior resistance against strain‐controlled loading at elevated temperatures such as thermomechanical fatigue.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • fatigue
  • texture
  • precipitate
  • electron beam melting
  • creep
  • superalloy