People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Biswas, Abhishek
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024On the grain level deformation of BCC metals with crystal plasticity modeling:Application to an RPV steel and the effect of irradiationcitations
- 2024Analysis of rolling contact and tooth root bending fatigue in a new high-strength steel:Experiments and micromechanical modellingcitations
- 2024On the grain level deformation of BCC metals with crystal plasticity modelingcitations
- 2024Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2024Analysis of rolling contact and tooth root bending fatigue in a new high-strength steel: Experiments and micromechanical modellingcitations
- 2023Estimating Long Term Behaviour Of DED-printed AlCoNiFe Alloy
- 2023Estimating Long Term Behaviour Of DED-printed AlCoNiFe Alloy
- 2023Micromechanical modeling of single crystal and polycrystalline UO2 at elevated temperaturescitations
- 2023Performance Driven Design And Modeling Of Compositionally Complex AM Al-Co-Ni-Fe Alloys
- 2023Performance Driven Design And Modeling Of Compositionally Complex AM Al-Co-Ni-Fe Alloys
- 2023Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2023Experimental Assessment and Micromechanical Modeling of Additively Manufactured Austenitic Steels under Cyclic Loadingcitations
- 2023Micromechanical modeling of single crystal and polycrystalline UO 2 at elevated temperaturescitations
- 2023Predicting anisotropic behavior of textured PBF-LB materials via microstructural modelingcitations
- 2022Micromechanical Modeling of AlSi10Mg Processed by Laser-Based Additive Manufacturing: From as-Built to Heat-Treated Microstructurescitations
- 2022Micromechanical Modeling of AlSi10Mg Processed by Laser-Based Additive Manufacturing: From as-Built to Heat-Treated Microstructures
- 2022A hybrid approach for the efficient computation of polycrystalline yield loci with the accuracy of the crystal plasticity finite element method
- 2022Data-oriented description of texture-dependent anisotropic material behaviorcitations
- 2022Identification of texture characteristics for improved creep behavior of a L-PBF fabricated IN738 alloy through micromechanical simulationscitations
- 2022Micromechanical Modeling of AlSi10Mg Processed by Laser-Based Additive Manufacturing:From as-Built to Heat-Treated Microstructurescitations
- 2020Influence of Pore Characteristics on Anisotropic Mechanical Behavior of Laser Powder Bed Fusion–Manufactured Metal by Micromechanical Modelingcitations
- 2020Study of the influence of microstructural features of 316L stainless steal produced by selective laser melting on its mechanical properties
- 2020Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientationscitations
- 2020Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientationscitations
- 2020Effect of grain statistics on micromechanical modeling
- 2020Influence of pore characteristics on anisotropic mechanical behavior of laser powder bed fusion–manufactured metal by micromechanical modelingcitations
- 2019Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientations
Places of action
Organizations | Location | People |
---|
article
Experimental Assessment and Micromechanical Modeling of Additively Manufactured Austenitic Steels under Cyclic Loading
Abstract
The present work deals with the cyclic deformation behavior of additively manufactured austenitic stainless steel 316L. Since fatigue experiments are complex and time-consuming, it is important to develop accurate numerical models to predict cyclic plastic deformation and extrapolate the limited experimental results into a wider range of conditions, considering also the microstructures obtained by additive manufacturing. Herein, specimens of 316L steel are produced by powder bed fusion of metals with laser beams (PBF-LB/M) with different parameters, and cyclic strain tests are performed to assess their deformation behavior under cyclic loads at room temperature. Additionally, a micromechanical model is set up, based on representative volume elements (RVE) mimicking the microstructure of the experimentally tested material that is characterized by electron backscatter diffraction (EBSD) analysis. With the help of these RVEs, the deformation-dependent internal stresses within the microstructure can be simulated in a realistic manner. The additively manufactured specimens are produced with their loading axis either parallel or perpendicular to the building direction, and the resulting anisotropic behavior under cyclic straining is investigated. Results highlight significant effects of specimen orientation and crystallographic texture and only a minor influence of grain shape on cyclic behavior.