Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martinez, Julio Andrés Iglesias

  • Google
  • 1
  • 8
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Parrot Beak‐Inspired Metamaterials with Friction and Interlocking Mechanisms 3D/4D Printed in Micro and Macro Scales for Supreme Energy Absorption/Dissipation36citations

Places of action

Chart of shared publication
Ji, Qingxiang
1 / 3 shared
Wu, Nan
1 / 4 shared
Zolfagharian, Ali
1 / 13 shared
Bodaghi, Mahdi
1 / 46 shared
Kadic, Muamer
1 / 24 shared
Ulliac, Gwenn
1 / 10 shared
Wang, Changguo
1 / 2 shared
Hamzehei, Ramin
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ji, Qingxiang
  • Wu, Nan
  • Zolfagharian, Ali
  • Bodaghi, Mahdi
  • Kadic, Muamer
  • Ulliac, Gwenn
  • Wang, Changguo
  • Hamzehei, Ramin
OrganizationsLocationPeople

article

Parrot Beak‐Inspired Metamaterials with Friction and Interlocking Mechanisms 3D/4D Printed in Micro and Macro Scales for Supreme Energy Absorption/Dissipation

  • Ji, Qingxiang
  • Wu, Nan
  • Martinez, Julio Andrés Iglesias
  • Zolfagharian, Ali
  • Bodaghi, Mahdi
  • Kadic, Muamer
  • Ulliac, Gwenn
  • Wang, Changguo
  • Hamzehei, Ramin
Abstract

<jats:sec><jats:label /><jats:p>Energy absorption and dissipation features of mechanical metamaterials have widespread applications in everyday life, ranging from absorbing shock impacts to mechanical vibrations. This article proposes novel bioinspired friction‐based mechanical metamaterials with a zero Poisson's ratio behavior inspired from parrot's beaks and manufactured additively. The mechanical performances of the corresponding metamaterials are studied at both macro and micro scales by experiments and finite element analysis (FEA). An excellent agreement is observed between the FEA and both microscopic and macroscopic scale experiments, showing the accuracy of the developed digital tool. Performances are compared to traditional triangular lattice metamaterials. Both experimental tests and FEA results demonstrate the following advantages: 1) absorbing and dissipating energy per unit of mass (SEA) at large compressive strains without global buckling; 2) bistable deformation patterns including friction‐based and interlocking mechanisms; 3) reversible deformation patterns after unloading; 4) shape recovery behavior after a heating–cooling process; and 5) the higher elastic modulus of micro metamaterials compared with their macro counterparts. This is the first demonstration of a bioinspired friction‐based design of 3D‐printed mechanical metamaterials that feature absorbing/dissipating energy, stability, and reversibility properties to cater to a wide range of sustainable <jats:italic>meta</jats:italic>‐cylinders in micro and macro scales.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • experiment
  • size-exclusion chromatography
  • finite element analysis
  • metamaterial
  • Poisson's ratio