Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohr, Gunther

  • Google
  • 28
  • 50
  • 710

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (28/28 displayed)

  • 2024Tensile and Low‐Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room‐ and High Temperature4citations
  • 2024Tensile and Low‐Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature4citations
  • 2024Impact of illumination technique on the detectability of irregularities in high-resolution images of visual in-situ process monitoring in Laser Powder Bed Fusioncitations
  • 2024Comparison of NIR and SWIR thermography for defect detection in Laser Powder Bed Fusion1citations
  • 2023On critical shifts of the process window due to heat accumulation in laser powder bed fusioncitations
  • 2023On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals8citations
  • 2023Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion4citations
  • 2023Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L9citations
  • 2023Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L9citations
  • 2023BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of austenitic stainless steel AISI 316Lcitations
  • 2023BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718citations
  • 2023BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ti-6Al-4Vcitations
  • 2022Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion35citations
  • 2022On the registration of thermographic in situ monitoring data and computed tomography reference data in the scope of defect prediction in laser powder bed fusion18citations
  • 2022Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 71819citations
  • 2022Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity12citations
  • 2022Experimental and numerical comparison of heat accumulation during laser powder bed fusion of 316L stainless steel22citations
  • 2021Triaxial residual stress in Laser Powder Bed Fused 316L12citations
  • 2021Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study25citations
  • 2021Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study141citations
  • 2021Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography5citations
  • 2021Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts28citations
  • 2021Can potential defects in LPBF be healed from the laser exposure of subsequent layers?25citations
  • 2020Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion112citations
  • 2020Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L29citations
  • 2020In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography116citations
  • 2020In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel30citations
  • 2020Probing a novel heat source model and adaptive remeshing technique to simulate laser powder bed fusion with experimental validation42citations

Places of action

Chart of shared publication
Sonntag, Nadja
2 / 6 shared
Hilgenberg, Kai
13 / 43 shared
Evans, Alexander
9 / 23 shared
Piesker, Benjamin
2 / 4 shared
Calderón, Luis Alexander Ávila
1 / 2 shared
Skrotzki, Birgit
10 / 70 shared
Jácome, Leonardo Agudo
1 / 2 shared
Rehmer, Birgit
8 / 25 shared
Ávila Calderón, Luis Alexander
4 / 6 shared
Agudo Jácome, Leonardo
2 / 34 shared
Poka, Konstantin
1 / 1 shared
Merz, Benjamin
1 / 1 shared
Schmidt, Jonathan
1 / 4 shared
Polte, Julian
1 / 18 shared
Scheuschner, Nils
2 / 9 shared
Oster, Simon
5 / 12 shared
Altenburg, Simon
6 / 17 shared
Sommer, Konstantin
5 / 9 shared
Bruno, Giovanni
8 / 107 shared
Ulbricht, Alexander
9 / 19 shared
Bayram, Faruk
5 / 5 shared
Ávila Calderon, Luis Alexander
4 / 4 shared
Schriever, Sina
1 / 10 shared
Maierhofer, Christiane
5 / 15 shared
Fritsch, Tobias
2 / 12 shared
Serrano-Munoz, Itziar
3 / 16 shared
Polatidis, Efthymios
1 / 16 shared
Schröder, Jakob
1 / 8 shared
Čapek, Jan
1 / 7 shared
Serrano Munoz, Itziar
1 / 18 shared
Pirling, T.
1 / 12 shared
Kromm, Arne
2 / 77 shared
Kannengießer, Thomas
2 / 126 shared
Sprengel, Maximilian
4 / 11 shared
Chaudry, Mohsin Ali
1 / 1 shared
Altenburg, Simon J.
6 / 8 shared
Pirling, Thilo
1 / 15 shared
Charmi, Amir
1 / 5 shared
Falkenberg, Rainer
1 / 6 shared
Saliwan Neumann, Romeo
1 / 10 shared
Ávila, Luis
1 / 2 shared
Recknagel, Sebastian
1 / 3 shared
Knobloch, Tim
1 / 1 shared
Bettge, Dirk
1 / 20 shared
Mishurova, Tatiana
1 / 50 shared
Hofmann, Michael
1 / 25 shared
Heinrich, Philipp
1 / 1 shared
Baum, Daniel
1 / 3 shared
De, A.
1 / 7 shared
Khan, K.
1 / 8 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Sonntag, Nadja
  • Hilgenberg, Kai
  • Evans, Alexander
  • Piesker, Benjamin
  • Calderón, Luis Alexander Ávila
  • Skrotzki, Birgit
  • Jácome, Leonardo Agudo
  • Rehmer, Birgit
  • Ávila Calderón, Luis Alexander
  • Agudo Jácome, Leonardo
  • Poka, Konstantin
  • Merz, Benjamin
  • Schmidt, Jonathan
  • Polte, Julian
  • Scheuschner, Nils
  • Oster, Simon
  • Altenburg, Simon
  • Sommer, Konstantin
  • Bruno, Giovanni
  • Ulbricht, Alexander
  • Bayram, Faruk
  • Ávila Calderon, Luis Alexander
  • Schriever, Sina
  • Maierhofer, Christiane
  • Fritsch, Tobias
  • Serrano-Munoz, Itziar
  • Polatidis, Efthymios
  • Schröder, Jakob
  • Čapek, Jan
  • Serrano Munoz, Itziar
  • Pirling, T.
  • Kromm, Arne
  • Kannengießer, Thomas
  • Sprengel, Maximilian
  • Chaudry, Mohsin Ali
  • Altenburg, Simon J.
  • Pirling, Thilo
  • Charmi, Amir
  • Falkenberg, Rainer
  • Saliwan Neumann, Romeo
  • Ávila, Luis
  • Recknagel, Sebastian
  • Knobloch, Tim
  • Bettge, Dirk
  • Mishurova, Tatiana
  • Hofmann, Michael
  • Heinrich, Philipp
  • Baum, Daniel
  • De, A.
  • Khan, K.
OrganizationsLocationPeople

article

Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion

  • Sommer, Konstantin
  • Bruno, Giovanni
  • Evans, Alexander
  • Ávila Calderón, Luis Alexander
  • Ulbricht, Alexander
  • Skrotzki, Birgit
  • Mohr, Gunther
Abstract

The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed.

Topics
  • impedance spectroscopy
  • grain
  • stainless steel
  • tomography
  • selective laser melting
  • void
  • creep
  • creep test