Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eusterholz, Michael

  • Google
  • 5
  • 27
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Grenzflächenreaktionen in refraktären Metall-Keramik-Verbundwerkstoffencitations
  • 2023Nanoscale Oxide Formation at α‐Al<sub>2</sub>O<sub>3</sub>–Nb Interfaces3citations
  • 2022High‐Temperature Ternary Oxide Phases in Tantalum/Niobium–Alumina Composite Materials10citations
  • 2022Coarse‐Grained Refractory Composite Castables Based on Alumina and Niobium10citations
  • 2017Differences in electrochemistry between fibrous SPAN and fibrous S/C cathodes relevant to cycle stability and capacitycitations

Places of action

Chart of shared publication
Heilmaier, Martin
3 / 247 shared
Ott, Vincent
1 / 4 shared
Gebauer, Julian
2 / 6 shared
Boll, Torben
3 / 18 shared
Lu, Yemao
1 / 2 shared
Ulrich, Sven
1 / 23 shared
Kauffmann, Alexander
2 / 53 shared
Stüber, Michael
1 / 17 shared
Aneziris, Christos G.
2 / 21 shared
Seifert, Hans Jürgen
1 / 19 shared
Franke, Peter
1 / 5 shared
Seifert, Hans-Jürgen
1 / 3 shared
Aneziris, Christos
1 / 7 shared
Weidner, Anja
2 / 17 shared
Biermann, Horst
2 / 342 shared
Günay, Gökhan
1 / 2 shared
Wagner, Susanne
1 / 6 shared
Hubálková, Jana
1 / 3 shared
Zienert, Tilo
1 / 4 shared
Gehre, Patrick
1 / 3 shared
Kraft, Bastian
1 / 6 shared
Endler, Dirk
1 / 2 shared
Dinnebier, Robert E.
1 / 6 shared
Zenn, Roland K.
1 / 1 shared
Buchmeiser, Michael R.
1 / 7 shared
Hintennach, Andreas
1 / 1 shared
Warneke, Sven
1 / 1 shared
Chart of publication period
2024
2023
2022
2017

Co-Authors (by relevance)

  • Heilmaier, Martin
  • Ott, Vincent
  • Gebauer, Julian
  • Boll, Torben
  • Lu, Yemao
  • Ulrich, Sven
  • Kauffmann, Alexander
  • Stüber, Michael
  • Aneziris, Christos G.
  • Seifert, Hans Jürgen
  • Franke, Peter
  • Seifert, Hans-Jürgen
  • Aneziris, Christos
  • Weidner, Anja
  • Biermann, Horst
  • Günay, Gökhan
  • Wagner, Susanne
  • Hubálková, Jana
  • Zienert, Tilo
  • Gehre, Patrick
  • Kraft, Bastian
  • Endler, Dirk
  • Dinnebier, Robert E.
  • Zenn, Roland K.
  • Buchmeiser, Michael R.
  • Hintennach, Andreas
  • Warneke, Sven
OrganizationsLocationPeople

article

Nanoscale Oxide Formation at α‐Al<sub>2</sub>O<sub>3</sub>–Nb Interfaces

  • Heilmaier, Martin
  • Ott, Vincent
  • Gebauer, Julian
  • Boll, Torben
  • Lu, Yemao
  • Ulrich, Sven
  • Kauffmann, Alexander
  • Eusterholz, Michael
  • Stüber, Michael
Abstract

<jats:sec><jats:label /><jats:p>Parts for metallurgical applications made from refractory metal–ceramic composites offer improved thermal shock resistance due to their capability for resistive heating compared to ones made solely from ceramics such as Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The combination of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and Nb is intriguing as both show similar thermal expansion behavior over a wide temperature range. The high affinity of Nb for O to form nonprotective oxides, however, hampers its use in oxidative environments. Formation of such phases at the ceramic–metal interface can have detrimental effects on the cohesion of the composites. For this work, nanocrystalline Nb films are deposited on sapphire substrates by magnetron sputtering to study diffusion of O and high‐temperature phase formation at a refractory metal–ceramic interface during heat treatment under Ar at 1600 °C. A combined approach of atom probe tomography and transmission electron microscopy for compositional and crystallographic analyses reveals that at triple junctions of the sapphire–Nb interface with Nb grain boundaries, heterogeneous nucleation of nanoscale NbO<jats:sub>2</jats:sub> occurs, which further reacts with Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> to form AlNbO<jats:sub>4</jats:sub>, while the Nb film itself remains metallic. Fast O transport through grain boundaries leads to internal oxidation at the interface, whereas regions further away from Nb grain boundaries remain unchanged.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • composite
  • transmission electron microscopy
  • thermal expansion
  • ceramic
  • refractory
  • size-exclusion chromatography
  • atom probe tomography
  • thermal shock resistance