People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Simon, Swantje
Friedrich-Alexander-Universität Erlangen-Nürnberg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Keep it Simple: Ceramic Kelvin Cells via Liquid Crystal Display‐Stereolithography Printingcitations
- 2024Advanced Hierarchical Biomorphous Silicon Carbide Monoliths
- 2023Relation between Structure, Mechanical and Piezoelectric Properties in Cellular Ceramic Auxetic and Honeycomb Structurescitations
- 2022Advanced Estimation of Compressive Strength and Fracture Behavior in Ceramic Honeycombs by Polarimetry Measurements of Similar Epoxy Resin Honeycombscitations
- 2021Porous Functional Graded Bioceramics with Integrated Interface Texturescitations
- 2020Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactonecitations
Places of action
Organizations | Location | People |
---|
article
Relation between Structure, Mechanical and Piezoelectric Properties in Cellular Ceramic Auxetic and Honeycomb Structures
Abstract
Optimizing renewable energy harvesting is of major importance in the following decades. In order to increase performance and efficiency, an ideal balance of mechanical and piezoelectric properties must be targeted. For this purpose, the approach of ceramic auxetic and honeycomb structures made of (Ba,Ca)(Zr,Ti)O3 (BCZT) which is produced via injection molding is considered. The main design parameter is the structural angle θ which is varied between −35° and 35°. Its effect on compressive strength, Young's modulus, and Poisson's ratio are determined via uniaxial compression tests and digital image correlation (DIC). Maximum compressive strength of 95 MPa at 0° (porosity of 59%) is found, which is superior to conventional porous ceramics of the same porosity. The piezoelectric constants d33 (max. 296 pC N−1) and g33 (max. 0.068 Vm N−1) are measured via the Berlincourt method and also exceed expectations, regardless of the structure. The theoretical models of Gibson and Ashby (mechanical) and Okazaki (piezoelectrical), as well as finite element method simulations, strengthen and explain the experimental results.