People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zolfagharian, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Soft Pneumatic Actuators with Controllable Stiffness by Bio‐Inspired Lattice Chambers and Fused Deposition Modeling 3D Printingcitations
- 2023Parrot Beak‐Inspired Metamaterials with Friction and Interlocking Mechanisms 3D/4D Printed in Micro and Macro Scales for Supreme Energy Absorption/Dissipationcitations
- 2023Parrot Beak-Inspired Metamaterials with Friction and Interlocking Mechanisms 3D/4D Printed in Micro and Macro Scales for Supreme Energy Absorption/Dissipationcitations
- 20233D‐Printed Soft and Hard Meta‐Structures with Supreme Energy Absorption and Dissipation Capacities in Cyclic Loading Conditionscitations
- 2022A Review on Additive/Subtractive Hybrid Manufacturing of Directed Energy Deposition (DED) Processcitations
- 2022A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structurescitations
- 2022Reversible energy absorption of elasto-plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printingcitations
- 2022Magneto‐/ electro‐responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applicationscitations
- 20224D Metamaterials with Zero Poisson's Ratio, Shape Recovery, and Energy Absorption Featurescitations
- 2022In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogelcitations
- 2021Nonlinear finite element modelling of thermo-visco-plastic styrene and polyurethane shape memory polymer foamscitations
- 2020Fracture Resistance Analysis of 3D-Printed Polymerscitations
- 20194D printing self-morphing structurescitations
Places of action
Organizations | Location | People |
---|
article
Soft Pneumatic Actuators with Controllable Stiffness by Bio‐Inspired Lattice Chambers and Fused Deposition Modeling 3D Printing
Abstract
<jats:sec><jats:label /><jats:p>This article shows how changing 3D printing parameters and using bio‐inspired lattice chambers can engineer soft pneumatic actuators (SPAs) with different behaviors in terms of controlling tip deflection and tip force using the same input air pressure. Fused deposition modeling (FDM) is employed to 3D print soft pneumatic actuators using varioShore thermoplastic polyurethane (TPU) materials with a foaming agent. The effects of material flow and nozzle temperature parameters on the material properties and stiffness are investigated. Auxetic, columns, face‐centered cubic, honeycomb, isotruss, oct vertex centroid, and square honeycomb lattices are designed to study actuators’ behaviors under the same input pressure. Finite‐element simulations based on the nonlinear hyper‐elastic constitutive model are carried out to precisely predict the behavior, deformation, and tip force of the actuators. A closed‐loop pneumatic system and sensors are developed to control the actuators. Results show that lattice designs can control the bending angle and generated force of actuators. Also, the lattices increase the ultimate strength by controlling the contact area inside the chambers. They demonstrate variable stiffness behaviors and deflections under the same pressure between 100 and 500 kPa. The proposed actuators could be instrumental in designing wearable hand rehabilitative devices that assist customized finger and wrist flexion‐extension.</jats:p></jats:sec>