Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Davies, Paul A.

  • Google
  • 1
  • 2
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Effects of Powder Atomization Route and Post‐Processing Thermal Treatments on the Mechanical Properties and Fatigue Resistance of Additively Manufactured 18Ni300 Maraging Steel22citations

Places of action

Chart of shared publication
Deirmina, Faraz
1 / 7 shared
Casati, Riccardo
1 / 14 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Deirmina, Faraz
  • Casati, Riccardo
OrganizationsLocationPeople

article

Effects of Powder Atomization Route and Post‐Processing Thermal Treatments on the Mechanical Properties and Fatigue Resistance of Additively Manufactured 18Ni300 Maraging Steel

  • Deirmina, Faraz
  • Davies, Paul A.
  • Casati, Riccardo
Abstract

<jats:sec><jats:label /><jats:p>In this work the effect of microstructural homogenization and solution annealing prior to ageing on mechanical properties and fatigue resistance of 18Ni300 maraging steel parts processed by laser powder bed fusion (L‐PBF), using two different feedstock powders with different N and O contents is investigated. The static mechanical properties are not significantly affected by the selection of the different feedstock powders. This is ascribed to the extremely fine size of the nonmetallic inclusions, characteristic of L‐PBF process, even by using feedstock powders containing higher O and N contents. The tensile properties in both “directly aged,” and “homogenized, solution annealed and aged” samples are comparable. The tensile strength and ductility are slightly improved compared with the vacuum melted wrought counterparts. The dynamic mechanical properties are affected by the O and N contents of the powders. Heat treatment schedule imposed a significant effect on the fatigue properties. The obtained fatigue strength in directly aged samples is already comparable to the wrought counterparts. Fatigue resistance is improved by using feedstock powders with lower oxygen and nitrogen levels. Proper homogenization heat treatments prior to ageing led to a further improvement of fatigue strength because of the elimination of intercellular microsegregation.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • inclusion
  • Oxygen
  • Nitrogen
  • strength
  • steel
  • fatigue
  • selective laser melting
  • aging
  • annealing
  • tensile strength
  • size-exclusion chromatography
  • ductility
  • homogenization
  • atomization