Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grieseler, Rolf

  • Google
  • 8
  • 32
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Phase formation of cubic silicon carbide from reactive silicon-carbon multilayers3citations
  • 2022Selective Metallization of Polymers: Surface Activation of Polybutylene Terephthalate (PBT) Assisted by Picosecond Laser Pulses12citations
  • 2021Selective metallization of polymers: surface activation of polybutylene terephthalate (PBT) assisted by picosecond laser pulses12citations
  • 2021Analysis of the physical and photoelectrochemical properties of c-Si(p)/a-SiC:H(p) photocathodes for solar water splitting2citations
  • 2020Capacitance voltage curve simulations for different passivation parameters of dielectric layers on siliconcitations
  • 2020Silicon interface passivation studied by modulated surface photovoltage spectroscopy1citations
  • 2018Magnetron sputtered AlN layers on LTCC multilayer and silicon substrates4citations
  • 2015Untersuchung der Eigenschaften sowie der Anwendung von reaktiven Mehrschichtsystemen in der Aufbau- und Verbindungstechnikcitations

Places of action

Chart of shared publication
Shekhawat, Deepshikha
1 / 2 shared
Sudhahar, Dwarakesh
1 / 1 shared
Pezoldt, Jörg
2 / 11 shared
Döll, Joachim
1 / 1 shared
Ziegler, Karl F.
2 / 2 shared
Schmidt, Udo
2 / 5 shared
Camargo, Magali
2 / 2 shared
Barz, Andrea
2 / 5 shared
Uebel, Martin
2 / 2 shared
Seiler, Michael
2 / 6 shared
Bund, Andreas
3 / 23 shared
Kurniawan, Mario
3 / 5 shared
Bliedtner, Jens
2 / 12 shared
Camargo, Magali K.
1 / 2 shared
Mejia, María Del Carmen
1 / 2 shared
Torres, Jorge Andres Guerra
1 / 5 shared
Rumiche, Francisco
1 / 2 shared
Tejada, Alvaro
1 / 2 shared
Sánchez, Luis Francisco
1 / 1 shared
Eggert, Lara
1 / 1 shared
Díaz, Isabel
1 / 2 shared
Guerra, Jorge A.
2 / 2 shared
Töfflinger, Jan Amaru
2 / 2 shared
Conde, L. A.
1 / 1 shared
Dulanto, Jorge A.
1 / 1 shared
Sevillano-Bendezú, Miguel Ángel
2 / 2 shared
Dulanto, Jorge
1 / 1 shared
Dittrich, Thomas
1 / 8 shared
Korte, Lars
1 / 14 shared
Bartsch, Heike
1 / 10 shared
Mánuel, Jose
1 / 1 shared
Müller, Jens
1 / 14 shared
Chart of publication period
2023
2022
2021
2020
2018
2015

Co-Authors (by relevance)

  • Shekhawat, Deepshikha
  • Sudhahar, Dwarakesh
  • Pezoldt, Jörg
  • Döll, Joachim
  • Ziegler, Karl F.
  • Schmidt, Udo
  • Camargo, Magali
  • Barz, Andrea
  • Uebel, Martin
  • Seiler, Michael
  • Bund, Andreas
  • Kurniawan, Mario
  • Bliedtner, Jens
  • Camargo, Magali K.
  • Mejia, María Del Carmen
  • Torres, Jorge Andres Guerra
  • Rumiche, Francisco
  • Tejada, Alvaro
  • Sánchez, Luis Francisco
  • Eggert, Lara
  • Díaz, Isabel
  • Guerra, Jorge A.
  • Töfflinger, Jan Amaru
  • Conde, L. A.
  • Dulanto, Jorge A.
  • Sevillano-Bendezú, Miguel Ángel
  • Dulanto, Jorge
  • Dittrich, Thomas
  • Korte, Lars
  • Bartsch, Heike
  • Mánuel, Jose
  • Müller, Jens
OrganizationsLocationPeople

article

Selective Metallization of Polymers: Surface Activation of Polybutylene Terephthalate (PBT) Assisted by Picosecond Laser Pulses

  • Ziegler, Karl F.
  • Schmidt, Udo
  • Camargo, Magali
  • Barz, Andrea
  • Uebel, Martin
  • Seiler, Michael
  • Bund, Andreas
  • Grieseler, Rolf
  • Kurniawan, Mario
  • Bliedtner, Jens
Abstract

<jats:sec><jats:label /><jats:p>The selective metallization of nonconductive polymer materials has broad applications in the fields of integrated circuit technology and metallized patterns. This work discusses a methodology to pattern metal tracks on polybutylene terephthalate substrates. The process consists of three steps: 1) surface patterning with picosecond laser pulses (1030 nm) in air, 2) Pd seeding via treatment in PdCl<jats:sub>2</jats:sub>solution, and 3) selective metallization via electroless copper deposition. Picosecond laser irradiation promotes not only surface roughening but also chemical modification to enable Pd seeding as the polymer surface acquires the ability to reduce Pd(II)‐chloride species to metallic Pd. The laser parameters, as well as the PdCl<jats:sub>2</jats:sub>concentration and seeding temperature, have an influence on the polymer surface morphology, the concentration and distribution of metallic Pd, and the copper layer properties. Homogeneous copper layers with well‐defined geometries, good coating‐substrate adhesion, and high electrical conductivity can be obtained. This is ascribed to the synergistic effect of the chemical surface activation and roughness development (from 0.13 to ≈1.6 μm). As the patterning and surface activation are performed in air, directly on the as‐received polymer substrate, this methodology shows great potential for metallization of electronic devices with 3D complex geometries.</jats:p></jats:sec>

Topics
  • Deposition
  • impedance spectroscopy
  • morphology
  • surface
  • polymer
  • copper
  • activation
  • size-exclusion chromatography
  • electrical conductivity