People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knaapila, Matti
Norwegian University of Science and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Classifying Tensile Loading History of Continuous Carbon Fiber Composites Using X‐Ray Scattering and Machine Learningcitations
- 2024Multi-scale correlation of impact-induced defects in carbon fiber composites using X-ray scattering and machine learning
- 2023Structural Study of Diketopyrrolopyrrole Derivative Thin Films: Influence of Deposition Method, Substrate Surface, and Aging
- 2023Structural Study of Diketopyrrolopyrrole Derivative Thin Films: Influence of Deposition Method, Substrate Surface, and Aging
- 2023Structural Study of Diketopyrrolopyrrole Derivative Thin Films: Influence of Deposition Method, Substrate Surface, and Aging
- 2022Local structure mapping of gel-spun ultrahigh-molecular-weight polyethylene fiberscitations
- 2022Classifying condition of ultra-high-molecular-weight polyethylene ropes with wide-angle X-ray scatteringcitations
- 2022Classifying condition of ultra-high-molecular-weight polyethylene ropes with wide-angle X-ray scatteringcitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2021Structural effects of electrode proximity in vacuum deposited organic semiconductors studied by microfocused X-ray scatteringcitations
- 2021Structural effects of electrode proximity in vacuum deposited organic semiconductors studied by microfocused X-ray scatteringcitations
- 2020Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by In Situ X-ray Diffractioncitations
- 2020Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by in Situ X-ray Diffractioncitations
- 2016Incorporation of a Cationic Conjugated Polyelectrolyte CPE within an Aqueous Poly(vinyl alcohol) Solcitations
- 2016Self-assembled systems of water soluble metal 8-hydroxyquinolates with surfactants and conjugated polyelectrolytescitations
- 2015Solid State Structure of Poly(9,9-dinonylfluorene)citations
- 2014Transparency Enhancement for Photoinitiated Polymerization (UV-curing) through Magnetic Field Alignment in a Piezoresistive Metal/Polymer Compositecitations
- 2009Aqueous Solution Behavior of Anionic Fluorene-co-thiophene-Based Conjugated Polyelectrolytescitations
- 2001Self-organization of nitrogen-containing polymeric supramolecules in thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Structural effects of electrode proximity in vacuum deposited organic semiconductors studied by microfocused X-ray scattering
Abstract
<p>Organic semiconductors have seen widespread application in thin-film devices, such as organic field-effect transistors (OFETs), whose performance is closely linked to the molecular-level microstructure and crystalline orientation. In actual OFETs, the microstructure varies significantly based on the local environment, for example, in the proximity of contact electrodes. This account highlights recent examples where microfocused grazing-incidence wide-angle X-ray scattering (μGIWAXS) maps structural information in between the OFET electrodes. Also shown are results where μGIWAXS is used to study the microstructure of naphthyl end-capped oligothiophenes across interdigitated electrode arrays in a bottom-contact OFET identifying lateral proximity effects of the contact electrodes in terms of crystalline misorientation, crystallite size, and disorder. The results together with those highlighted, classify essential structural parameters on and in between the electrodes and demonstrate capabilities of microfocused X-rays to map microstructures in actual devices. The ideas presented herein bring us toward guidelines for understanding electrode proximity and device performance in molecular semiconductors. It is also believed that they are readily expanded from OFETs to other devices and from small molecules to polymers and other materials.</p>