People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wójcik, Anna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Adaptive Phase or Variant Formation at the Austenite/Twinned Martensite Interface in Modulated Ni–Mn–Ga Martensitecitations
- 2024Effect of twist-channel angular pressing on precipitation in Al–Mg–Zn–Ga alloys
- 2023Ambient Processed rGO/Ti<sub>3</sub>CNT<sub><i>x</i></sub> MXene Thin Film with High Oxidation Stability, Photosensitivity, and Self-Cleaning Potentialcitations
- 2021Microstructure and magnetic properties of selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders derived from as melt-spun ribbons precursorscitations
- 2021Suppression and Recovery of Martensitic Transformation and Magnetism in Mechanically and Thermally Treated Magnetic Shape‐Memory Ni−Mn−Ga Melt‐Spun Ribbonscitations
- 2020Effect of pressure on the phase stability and magnetostructural transitions in nickel-rich NiFeGa ribbonscitations
- 2019Microstructural anisotropy, phase composition and magnetic properties of as-cast and annealed Ni-Mn-Ga-Co-Cu melt-spun ribbonscitations
- 2019The evolution of microstructure and magneto-structural properties of heat treated ni-mn-sn-in heusler alloys sintered by vacuum hot pressing
- 2018Structure and inverse magnetocaloric effect in Ni-Co-Mn-Sn(Si) Heusler alloyscitations
Places of action
Organizations | Location | People |
---|
article
Suppression and Recovery of Martensitic Transformation and Magnetism in Mechanically and Thermally Treated Magnetic Shape‐Memory Ni−Mn−Ga Melt‐Spun Ribbons
Abstract
As-melt-spun Ni50.2Mn28.3Ga21.5 ribbons are subjected to milling and subsequentannealing for various times. With progressing milling time, the martensitictransformation is gradually suppressed, magnetic moment deteriorates, whereasthe crystal structure undergoes a body centered tetragonal (bct) into face centeredcubic (fcc) change. High-resolution transmission electron microscopy demonstratesa twin-deformed zone in fcc powder particles, which works to improvecircularity of as-produced powders. Subsequent annealing of as-milled powdersrestores martensitic transformation and magnetism, as well as it reverts the fccinto the original 5M structure. It is hence showcased that due to an allotropictransformation, brittle Heusler alloys are mechanically optimized for 3D printingwithout loss of their functional properties.