Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wałpuski, Bartłomiej

  • Google
  • 2
  • 3
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Additive manufacturing of electronics from silver nanopowders sintered on 3D printed low-temperature substrates13citations
  • 2019Heterophase materials for fused filament fabrication of structural electronics33citations

Places of action

Chart of shared publication
Słoma, Marcin
2 / 21 shared
Podsiadły, Bartłomiej
1 / 8 shared
Skalski, Andrzej
1 / 13 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Słoma, Marcin
  • Podsiadły, Bartłomiej
  • Skalski, Andrzej
OrganizationsLocationPeople

article

Additive manufacturing of electronics from silver nanopowders sintered on 3D printed low-temperature substrates

  • Słoma, Marcin
  • Wałpuski, Bartłomiej
Abstract

Additive manufacturing is more widely used these days in aerospace, power industry, and automotive. The latest reports indicate that electronics can be produced with this technique. This approach requires the development of new materials for the fabrication of conductive metallic layers on polymers. Herein, a hybrid technique based on fused deposition modeling, direct‐write, and selective laser sintering is demonstrated, for the fabrication of structural electronics. Highly conductive paths are obtained with conductivity values up to 3.2·10<sup>6</sup> S m<sup>−1</sup> in a single printing and sintering additive process. The influence of process parameters is evaluated with several 3D printed polymer substrates affecting the electrical conductivity of the printed conductive paths and circuits. The developed hybrid technique allows performing selective thermal sintering of metallic pastes on polymer substrates exhibiting the value of melting temperatures much lower than the sintering temperature of the silver paste. This phenomenon can be explained with the proposed hypothesis that the activation energy of the sintering process of metallic paste and degradation of polymer substrate plays a key role in obtaining functional conductive metallic paths on polymer substrates. Application of the developed process is demonstrated with a simple human interface device and a circuit with light‐emitting diodes and power source.

Topics
  • Deposition
  • impedance spectroscopy
  • polymer
  • silver
  • activation
  • electrical conductivity
  • sintering
  • laser sintering
  • melting temperature