People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Vries, Erik
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Direct observation of the fracture behavior of the polyether ketone ketone (PEKK) spherulitescitations
- 2024The modified boundary layer mechanism for the release between polyimide film and poly(ether ketone ketone) thermoplasticscitations
- 2023Tribological behaviour of a synthetic synovial fluid and polyurethane in biomedical implantscitations
- 2023Microbubble on fiber method to determine the contact angle between steel substrates and highly viscous molten PEKK and PA 6citations
- 2021Influence of the Polymer Interphase Structure on the Interaction between Metal and Semicrystalline Thermoplasticscitations
- 2021Formation of Flat-on Lamellar Crystals in Absence of Nanoconfinementcitations
- 2019Fabricating Laser-Induced Periodic Surface Structures on Medical Grade Cobalt–Chrome–Molybdenumcitations
Places of action
Organizations | Location | People |
---|
article
Influence of the Polymer Interphase Structure on the Interaction between Metal and Semicrystalline Thermoplastics
Abstract
It is demonstrated that a lamellar crystalline structure may form near the metal–polymer interface during the comolding of metal–thermoplastic joints. The influence of the crystalline morphology near the interface on the rupture behavior of the joint is studied experimentally. High-resolution scanning electron microscopy (HR–SEM), atomic force microscopy (AFM), and optical microscopy are used to characterize the microstructure of the metal–thermoplastic interface. The results show that a lamellar crystalline structure at the interface promotes cohesive failure, i.e., the crack runs in the polymer. Additional experiments show that a transcrystalline polymer structure at the interface results in failure at the interface. Herein, two methodologies have been developed to characterize the formation of the transcrystalline polymer interphase structure based on X-ray diffraction and polarized light hot stage microscopy. The results show the importance of the polymer interphase structure for metal–thermoplastic interactions. Understanding of the formation of the polymer interphase and its influence on the interfacial bonding strength are vital for thermoplastic applications such as fiber-reinforced thermoplastic composites, tool surface design for processing of thermoplastics, and their composites as well as for metal–polymer hybrid joints.