Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lyu, Hao

  • Google
  • 5
  • 20
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Wave based damage detection in solid structures using spatially asymmetric encoder–decoder network20citations
  • 2021Wave based damage detection in solid structures using spatially asymmetric encoder-decoder network20citations
  • 2020Combining Experiments and Atom Probe Tomography‐Informed Simulations on γ′ Precipitation Strengthening in the Polycrystalline Ni‐Base Superalloy A718Plus21citations
  • 2020Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver filmscitations
  • 2019Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films7citations

Places of action

Chart of shared publication
Rizvi, Zarghaam H.
1 / 1 shared
Sattari, Amir S.
1 / 1 shared
Wuttke, Frank
2 / 2 shared
Rizvi, Zarghaam Haider
1 / 2 shared
Shoarian Sattari, Amir
1 / 1 shared
Felfer, Peter Johann
1 / 72 shared
Förner, Andreas
1 / 10 shared
Göken, Mathias
3 / 350 shared
Pröbstle, Martin
1 / 3 shared
Neumeier, Steffen
1 / 118 shared
Bitzek, Erik
3 / 69 shared
Houllé, Frédéric
1 / 1 shared
Huenert, Daniela
1 / 1 shared
Kirchmayer, Andreas
1 / 5 shared
Gannott, Florentina
2 / 5 shared
Preiß, Eva I.
2 / 4 shared
Merle, Benoit
2 / 87 shared
Gruber, Patric A.
2 / 5 shared
Richter, Gunther
2 / 5 shared
Liebig, Jan P.
2 / 4 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Rizvi, Zarghaam H.
  • Sattari, Amir S.
  • Wuttke, Frank
  • Rizvi, Zarghaam Haider
  • Shoarian Sattari, Amir
  • Felfer, Peter Johann
  • Förner, Andreas
  • Göken, Mathias
  • Pröbstle, Martin
  • Neumeier, Steffen
  • Bitzek, Erik
  • Houllé, Frédéric
  • Huenert, Daniela
  • Kirchmayer, Andreas
  • Gannott, Florentina
  • Preiß, Eva I.
  • Merle, Benoit
  • Gruber, Patric A.
  • Richter, Gunther
  • Liebig, Jan P.
OrganizationsLocationPeople

article

Combining Experiments and Atom Probe Tomography‐Informed Simulations on γ′ Precipitation Strengthening in the Polycrystalline Ni‐Base Superalloy A718Plus

  • Felfer, Peter Johann
  • Förner, Andreas
  • Göken, Mathias
  • Pröbstle, Martin
  • Neumeier, Steffen
  • Bitzek, Erik
  • Houllé, Frédéric
  • Huenert, Daniela
  • Kirchmayer, Andreas
  • Lyu, Hao
Abstract

<jats:sec><jats:label /><jats:p>The strength of superalloys is strongly influenced by γ′ precipitates, whose size and volume fraction which can be adjusted by heat treatments. According to classical precipitation strengthening models, an increasing precipitate diameter should lead to a transition from weak to strong coupling of the dislocation pairs that form superdislocations in the γ′ phase. We show that long‐term annealing of the Ni‐base superalloy A718Plus at 670 and 680 °C increases the alloy's strength without significantly changing the grain size and η fraction. To understand the effect of the slight increase in γ′ size, detailed atom probe tomography (APT) was performed. Here, different field evaporation rates of the phases strongly affect the determination of the volume fraction when using the usual isosurface construction. This can be mitigated by considering the number density of atoms inside and outside the γ′ precipitates. Using an approximation of the precipitate shapes and arrangements from the APT data in atomistic simulations revealed that precipitate shearing by both, weakly and strongly coupled dislocations can occur in the same sample due to the wide distribution of precipitate sizes. These results highlight the need for advanced strengthening models that take into account the γ′ size distribution.</jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • grain
  • grain size
  • phase
  • experiment
  • simulation
  • strength
  • dislocation
  • precipitate
  • precipitation
  • annealing
  • size-exclusion chromatography
  • evaporation
  • superalloy
  • atom probe tomography