Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Knosalla, Christian

  • Google
  • 1
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Investigation on the Corrosion Behavior of Nickel‐Base Alloys in Molten Chlorides for Sensible Heat Energy Applications14citations

Places of action

Chart of shared publication
Hurtado, Antonio
1 / 11 shared
Lau, Marius
1 / 2 shared
Lippmann, Wolfgang
1 / 5 shared
Schmies, Lennart
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Hurtado, Antonio
  • Lau, Marius
  • Lippmann, Wolfgang
  • Schmies, Lennart
OrganizationsLocationPeople

article

Investigation on the Corrosion Behavior of Nickel‐Base Alloys in Molten Chlorides for Sensible Heat Energy Applications

  • Knosalla, Christian
  • Hurtado, Antonio
  • Lau, Marius
  • Lippmann, Wolfgang
  • Schmies, Lennart
Abstract

<jats:sec><jats:label /><jats:p>Nine selected alloys are exposed in molten KCl–LiCl (eutectic composition) at 1073 K for 167 h under argon atmosphere to predict the long‐term corrosion behavior of these structural materials. The corrosive attack of each alloy is assessed with gravimetric methods, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy measurements. The corrosion rate of each alloy is calculated in accordance with ASTM G1‐03. Low chromium containing alloys as HAYNES 242, Hastelloy B‐3, and Hastelloy N revealed minor or no significant corrosive attack after molten chloride exposure. Alloy 600, Alloy 617, HAYNES 625, Hastelloy X, HAYNES 230, and HAYNES 188 with a chromium content <jats:italic>w</jats:italic><jats:sub>Cr</jats:sub> &gt; 8% show severe corrosive attack with complete chromium depletion along the near‐surface layer and partially along grain boundaries. The results show that chromium forms chromium oxide with impurities of oxygen and water vapor at low oxygen partial pressures. This initiates an accelerated corrosion of the alloying elements in the matrix of Ni, Cr, Mo, Fe, and Co, due to chlorine formation. The influence of the composition of nickel‐base alloys on the corrosion resistance is discussed based on the comparison of the gravimetric measurements and thermodynamic calculations.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • nickel
  • corrosion
  • chromium
  • scanning electron microscopy
  • Oxygen
  • size-exclusion chromatography