Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baumgart, Christine

  • Google
  • 1
  • 5
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Microstructural and Mechanical Characterization of Square‐Celled TRIP Steel Honeycomb Structures Produced by Electron Beam Melting6citations

Places of action

Chart of shared publication
Krüger, Lutz
1 / 13 shared
Biermann, Horst
1 / 342 shared
Wagner, Ruben
1 / 3 shared
Burkhardt, Christina
1 / 4 shared
Günther, Johannes
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Krüger, Lutz
  • Biermann, Horst
  • Wagner, Ruben
  • Burkhardt, Christina
  • Günther, Johannes
OrganizationsLocationPeople

article

Microstructural and Mechanical Characterization of Square‐Celled TRIP Steel Honeycomb Structures Produced by Electron Beam Melting

  • Krüger, Lutz
  • Baumgart, Christine
  • Biermann, Horst
  • Wagner, Ruben
  • Burkhardt, Christina
  • Günther, Johannes
Abstract

<jats:sec><jats:label /><jats:p>The powder‐bed additive manufacturing (AM) technology electron beam melting (EBM) is suitable for the production of metallic components with complex geometries. Therefore, it is an appropriate method of generating lightweight structures to save material and energy, which is of high importance for the transport industry. The microstructure of additive manufactured materials is usually characterized by columnar grains shape, oriented along the building direction. Therefore, the mechanical properties are strongly affected by anisotropy. Herein, the synthesis and the microstructure of CrMnNi transformation‐induced plasticity (TRIP) steel by EBM is examined. This steel is well suited for AM due to the formation of fine‐grained microstructure instead of columnar one through multiple‐phase transformations. Square‐celled honeycomb structures are produced and improved to generate damage‐tolerant struts. The removal of slightly sintered powder from the cavities of square‐celled structures is quantified. Out‐of‐plane compression tests at quasistatic loading rates show that the strength of honeycomb structures rises with increasing energy input during EBM due to lower material porosity. Therefore, an enhanced mechanical energy absorption capacity is achieved which is favorable for the production of cellular structures.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • strength
  • steel
  • compression test
  • plasticity
  • porosity
  • size-exclusion chromatography
  • electron beam melting