People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roters, Franz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2023Application of a nanoindentation-based approach for parameter identification to a crystal plasticity model for bcc metals
- 2022Influence of Strain Rate Sensitivity on Cube Texture Evolution in Aluminium Alloyscitations
- 2022Crystal plasticity simulation of in-grain microstructural evolution during large deformation of IF-steelcitations
- 2022Determination and analysis of the constitutive parameters of temperature-dependent dislocation-density-based crystal plasticity modelscitations
- 2021Large-deformation crystal plasticity simulation of microstructure and microtexture evolution through adaptive remeshingcitations
- 2020Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steelscitations
- 2020Current challenges and opportunities in microstructure-related properties of advanced high-strength steelscitations
- 2019Microstructural influences on fracture at prior austenite grain boundaries in dual-phase steelscitations
- 2019Solving Material Mechanics and Multiphysics Problems of Metals with Complex Microstructures using DAMASK – The Düsseldorf Advanced Material Simulation Kitcitations
- 2019Solving Material Mechanics and Multiphysics Problems of Metals with Complex Microstructures using DAMASK – The Düsseldorf Advanced Material Simulation Kitcitations
- 2019Understanding the mechanisms of electroplasticity from a crystal plasticity perspectivecitations
- 2018Multiscale modelling of hydrogen transport and segregation in polycrystalline steelscitations
- 2017Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void:Pore Shape Versus Crystallographic Orientationcitations
- 2017Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Voidcitations
- 2017A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulationscitations
- 2017Elasto-viscoplastic phase field modelling of anisotropic cleavage fracturecitations
- 2016Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compressioncitations
- 2016Neighborhood influences on stress and strain partitioning in dual-phase microstructures:An investigation on synthetic polycrystals with a robust spectral-based numerical methodcitations
- 2016Neighborhood influences on stress and strain partitioning in dual-phase microstructurescitations
- 2015Analytical bounds of in-plane Young's modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structurescitations
- 2015Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal tungsten strengthcitations
- 2015Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materialscitations
- 2014Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulationscitations
- 2014Integrated experimental--simulation analysis of stress and strain partitioning in multiphase alloyscitations
- 2013Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experimentscitations
- 2013Crystal Plasticity Modeling
- 2010Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling : theory, experiments, applications
- 2010Microstructure and texture evolution in dual-phase steels : competition between recovery, recrystallization, and phase transformation
- 2008Texture evolution during bending of a single crystal copper nanowire studied by EBSD and crystal plasticity finite element simulations
- 2007A dislocation density based constitutive law for BCC materials in crystal plasticity FEM
- 2007Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study
- 2007Simulation of earing during deep drawing of an Al-3% Mg alloy (AA 5754) using a texture component crystal plasticity FEM
- 2006A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations
- 2006Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations
- 2006On strain gradients and size-dependent hardening descriptions in crystal plasticity frameworks
- 2006Simulation of the deformation texture of a 17%Cr ferritic stainless steel using the texture component crystal plasticity finite element method considering texture gradients
- 2006On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling : theory, experiments, and simulations
- 2004Using texture components in crystal plasticity finite element simulations
- 2004Study on the orientational stability of cube-oriented FCC crystals under plane strain by use of a texture component crystal plasticity finite element methodcitations
Places of action
Organizations | Location | People |
---|
article
Solving Material Mechanics and Multiphysics Problems of Metals with Complex Microstructures using DAMASK – The Düsseldorf Advanced Material Simulation Kit
Abstract
Predicting process–structure and structure–property relationships are the key tasks in materials science and engineering. Central to both research directions is the internal material structure. In the case of metallic materials used for structural applications, this internal structure, the microstructure, is the collective ensemble of all equilibrium and non‐equilibrium lattice imperfections. Continuum models to derive process–structure and structure–property relationships are based on two ingredients: 1) quantitative state variables that capture the essential features of the material’s microstructural state and 2) kinetic equations for the state that describe the evolution of these parameters under load. Successful models, i.e. models that are of practical use, depend on state variables and corresponding evolution laws that are sufficiently representative for the microstructure and which are able to describe the phenomena of interest. The development of software tools capable to integrate these different aspects to get a holistic view of process–structure–property relationships requires joint efforts from specialist in different disciplines and a long‐term perspective. The Düsseldorf Advanced Materials Simulation Kit (DAMASK) is such a tool. In this overview article published on the occasion of AEM’s 20th anniversary, some representative application examples which demonstrate how DAMASK can be used to study metallic microstructures at different length scales are presented.