Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Halbauer, Lars

  • Google
  • 2
  • 10
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Electron Beam Welding and Characterization of Dissimilar Joints with TWIP Matrix Composites7citations
  • 2017Electron beam welding of Fe–Mn–Al–Ni shape memory alloy: Microstructure evolution and shape memory response15citations

Places of action

Chart of shared publication
Buchwalder, Anja
2 / 3 shared
Krüger, Lutz
1 / 13 shared
Biermann, Horst
2 / 342 shared
Radajewski, Markus
1 / 4 shared
Laubstein, Rudy
1 / 1 shared
Vollmer, Malte
1 / 36 shared
Zenker, Rolf
1 / 2 shared
Krooß, Philipp
1 / 36 shared
Niendorf, Thomas
1 / 301 shared
Günther, Johannes
1 / 4 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Buchwalder, Anja
  • Krüger, Lutz
  • Biermann, Horst
  • Radajewski, Markus
  • Laubstein, Rudy
  • Vollmer, Malte
  • Zenker, Rolf
  • Krooß, Philipp
  • Niendorf, Thomas
  • Günther, Johannes
OrganizationsLocationPeople

article

Electron Beam Welding and Characterization of Dissimilar Joints with TWIP Matrix Composites

  • Buchwalder, Anja
  • Halbauer, Lars
  • Krüger, Lutz
  • Biermann, Horst
  • Radajewski, Markus
  • Laubstein, Rudy
Abstract

<jats:sec><jats:label /><jats:p>Welding of Mg‐PSZ‐reinforced TWIP metal matrix composites (TWIP MMC) requires precise control over the level of dilution: otherwise, the risk of cavity formation arises. For this work, dissimilar joints between a TWIP MMC and an AISI 304 stainless steel are produced by means of electron beam welding over a wide range of process parameters. The influence of the welding process on the dilution, the microstructure of the welding seam, and the mechanical properties is presented and classified according to DIN EN ISO 13919–1. Furthermore, the welding quality of the samples is characterized by non‐destructive testing methods such as the novel uit and X‐ray analysis. It is shown that joints with EG ≥ ‘C’ can be produced with a high degree of reproducibility within a parameter window of Δx = 0.40.6 mm at welding speeds of 15 and 5 mm s<jats:sup>−1</jats:sup>. The main defects are cavities, underfill, and lack of fusion which can all be detected by the uit down to a minimum defect size of 90–100 µm. Lower welding speeds and a slight underfocus decrease the tendency toward defects and for a (Δx) = 0.5 mm, tensile properties are achieved to match the level of the TWIP MMC.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • microstructure
  • stainless steel
  • composite
  • defect
  • size-exclusion chromatography
  • metal-matrix composite