Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malarría, Jorge

  • Google
  • 2
  • 11
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Kinetics of the α → γ′ stress-induced martensitic transformation in a Fe–Mn–Al–Ni shape memory bicrystalcitations
  • 2018Is it Possible to Use Rolling Methods to Improve Textures on Fe–Mn–Si Shape Memory Alloys?8citations

Places of action

Chart of shared publication
Giordana, Maria Florencia
1 / 1 shared
Schell, Norbert
1 / 180 shared
Guerrero, Lina María
1 / 1 shared
Barriobero-Vila, Pere
1 / 23 shared
Maawad, Emad
1 / 59 shared
Vallejos, Juan Manuel
1 / 5 shared
Requena, Guillermo
1 / 53 shared
Sobrero, César
1 / 1 shared
Fuster, Valeria
1 / 4 shared
Bolmaro, Raúl
1 / 3 shared
Druker, Ana V.
1 / 1 shared
Chart of publication period
2024
2018

Co-Authors (by relevance)

  • Giordana, Maria Florencia
  • Schell, Norbert
  • Guerrero, Lina María
  • Barriobero-Vila, Pere
  • Maawad, Emad
  • Vallejos, Juan Manuel
  • Requena, Guillermo
  • Sobrero, César
  • Fuster, Valeria
  • Bolmaro, Raúl
  • Druker, Ana V.
OrganizationsLocationPeople

article

Is it Possible to Use Rolling Methods to Improve Textures on Fe–Mn–Si Shape Memory Alloys?

  • Sobrero, César
  • Fuster, Valeria
  • Bolmaro, Raúl
  • Malarría, Jorge
  • Druker, Ana V.
Abstract

<jats:sec><jats:label /><jats:p>No uniform rolling deformation produces shear strains that give rise to textural and microstructural heterogeneities in processed metals and alloys. In this work, the authors investigate Fe–30Mn–4Si shape memory alloy sheets rolled in different conditions at 600 °C, in order to determine the process giving rise to the best structure and the strongest {100}&lt;110&gt; shear texture. This crystallographic orientation is the most favorable for the γ → ϵ martensitic transformation, which provides the shape memory effect in these alloys. In the current conditions, the authors find that unidirectional rolling produces a shear texture in sheet's surface layers. The authors compare the texture and microstructure from this process to those obtained from reverse rolling and single‐roller drive rolling.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • texture
  • size-exclusion chromatography