People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sercombe, Tim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023On the importance of nano-oxide control in laser powder bed fusion manufactured Ni-based alloys to enhance fracture propertiescitations
- 2023Dynamic constitutive behavior of LPBFed metal alloyscitations
- 2022Bioactivity and biodegradability of high temperature sintered 58S ceramicscitations
- 2022High strain-rate response of additively manufactured light metal alloyscitations
- 2020The effect of drying method on the surface structure of mesoporous sol-gel derived bioactive glass-ceramiccitations
- 2018Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprintingcitations
- 2017On the Breakdown of SiC during the Selective Laser Melting of Aluminum Matrix Compositescitations
- 2016A 3D printed superconducting aluminium microwave cavitycitations
- 2016Selective laser melting of Zr-based bulk metallic glassescitations
- 2016Selective laser melting of Al-12Si alloy: Enhanced densification via powder dryingcitations
- 2011Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloycitations
- 2008Heat treatment of Ti-6Al-7Nb components produced by selective laser meltingcitations
- 2008Process repeatability and sources of error in indirect SLS of aluminiumcitations
- 2007The Effect of Particle Shape on the Sintering of Aluminumcitations
- 2006Process shrinkage and accuracy during indirect laser sintering of aluminiumcitations
- 2005Sintering of maraging steel with phosphorous additionscitations
- 2004On the role of magnesium and nitrogen in the infiltration of aluminium by aluminium for rapid prototyping applicationscitations
- 2004On the role of tin in the infiltration of aluminium by aluminium for rapid prototyping applicationscitations
- 2003Sintering of freeformed maraging steel with boron additionscitations
- 2003The effect of resin type on the sintering of freeformed maraging steelcitations
- 2003On the sintering of uncompacted, pre-alloyed Al powder alloyscitations
- 2003Rapid manufacturing of aluminum componentscitations
- 2001Liquid phase sintering of aluminium alloyscitations
Places of action
Organizations | Location | People |
---|
article
On the Breakdown of SiC during the Selective Laser Melting of Aluminum Matrix Composites
Abstract
<p>Selective laser melting (SLM) is used to produce a SiC reinforced aluminum metal matrix composite (AMMC, Al-12Si plus 10vol% SiC) with laser energy densities (Ep) between 20 and 80Jmm(-3). Microstructural analysis shows that at lower energies, SiC is present in the Al-12Si matrix; however, at higher energies there is a distinct lack of SiC particles and the extensive formation of Al4C3 needles and primary Si particles. XRD analysis confirms a decrease in the volume of SiC and an increase in the amount of Al4C3 and primary Si with increasing . This indicates that a reaction occurs between the Al and SiC during SLM. The underlying mechanism is attributed to the selective absorption of laser energy into the SiC particles, causing regions of extremely high temperatures. The formation of the reaction products cause errors in the theoretical density calculations. Therefore, X-ray micro tomography (XMT) is used to independently measure the relative density of the samples with a peak relative density approximate to 97.4%, which is much higher than that (relative density approximate to 93%) measured using the Archimedes method.</p>