Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Katimon, Mohd Nizam

  • Google
  • 2
  • 5
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Simulation Study of BACM Mold Respect to Temperature Distributioncitations
  • 2015Producing high-strength metals by I-ECAP12citations

Places of action

Chart of shared publication
Sapaat, Azri Izani
1 / 1 shared
Olejnik, Lech
1 / 24 shared
Boczkal, Sonia
1 / 13 shared
Gzyl, Michal
1 / 6 shared
Rosochowski, Andrzej
1 / 12 shared
Chart of publication period
2021
2015

Co-Authors (by relevance)

  • Sapaat, Azri Izani
  • Olejnik, Lech
  • Boczkal, Sonia
  • Gzyl, Michal
  • Rosochowski, Andrzej
OrganizationsLocationPeople

article

Producing high-strength metals by I-ECAP

  • Olejnik, Lech
  • Katimon, Mohd Nizam
  • Boczkal, Sonia
  • Gzyl, Michal
  • Rosochowski, Andrzej
Abstract

Incremental equal channel angular pressing (I-ECAP) is used in this work to produce ultrafine-grained (UFG) pure iron, aluminum alloy 5083, commercial purity titanium (grade 4), and magnesium alloy AZ31B. Pure iron is processed at room temperature, aluminum alloy at 200 °C, titanium at 320 °C, and magnesium alloy at 150 °C. Strength improvement, attributed to the grain refinement below 1 μm, is reported for all processed materials. The yield strength increase is the most apparent in pure iron, reaching almost 500 MPa after one pass of I-ECAP, comparing to 180 MPa in the as-forged conditions. UFG titanium, aluminum, and magnesium alloys obtained in this study reached yield stress of 800, 350, and 300 MPa, respectively, in each case exhibiting the yield strength increase by at least 30%, comparing to the alloys processed by conventional metal forming operations such as forging and rolling.

Topics
  • impedance spectroscopy
  • grain
  • Magnesium
  • magnesium alloy
  • Magnesium
  • aluminium
  • strength
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • titanium
  • iron
  • yield strength
  • forging