People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duarte, Isabel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Insights into morphology and mechanical properties of architected interpenetrating aluminum-alumina compositescitations
- 2024Elaboration and experimental characterizations of copper-filled polyamide micro-composites for tribological applicationscitations
- 2023On the Structural, Thermal, Micromechanical and Tribological Characterizations of Cu-Filled Acrylonitrile Butadiene Styrene Micro-Compositescitations
- 2022Hybrid structures for Achilles' tendon repaircitations
- 2022Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibilitycitations
- 2022The influence of precipitation hardening on the damping capacity in Al–Si–Mg cast components at different strain amplitudescitations
- 2020Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability
- 2018Axial crush behaviour of the aluminium alloy in-situ foam filled tubes with very low wall thicknesscitations
- 2016Compressive behaviour of unconstrained and constrained integral-skin closed-cell aluminium foamcitations
- 2016Composite and Nanocomposite Metal Foamscitations
- 20142D quantitative analysis of metal foaming kinetics by hot-stage microscopycitations
- 2000A study of aluminium foam formation - Kinetics and microstructure
Places of action
Organizations | Location | People |
---|
document
2D quantitative analysis of metal foaming kinetics by hot-stage microscopy
Abstract
Hot-stage microscopy (HSM) coupled with the free image analysis software ImageJ as an alternative and simple approach for quantifying the foaming kinetics of metallic precursors was studied. Rectangular extruded profiles of foamable precursor materials of aluminum alloys, AA 6061 and AlSi7, of 160 × 20mm2 and 20 × 5mm2 cross-sections, respectively, were used in this study. These profiles were prepared in a three-step process, comprising powder mixture, cold isostatic pressing and hot extrusion. The foaming experiments were performed at a constant heating rate of 10°C min-1 using a hot-stage microscope equipped with an alumina furnace. The temperature was measured using a thermocouple inside an alumina pyrometric bar on which the holder with the sample is placed. The HSM results indicate that 1 s time step enables the detailed observation of phenomena occurring at the outer surface of the sample. The most important stages of foam evolution can be identified, starting from the unfoamed sample.