Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Neudert, Andreas

  • Google
  • 1
  • 5
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Magnetic domains and twin boundary movement of NiMnGa magnetic shape memory crystals31citations

Places of action

Chart of shared publication
Mccord, Jeffrey
1 / 40 shared
Lai, Yin Wai
1 / 1 shared
Schäfer, Rudolf
1 / 18 shared
Schultz, Ludwig
1 / 31 shared
Kustov, Mikhail
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Mccord, Jeffrey
  • Lai, Yin Wai
  • Schäfer, Rudolf
  • Schultz, Ludwig
  • Kustov, Mikhail
OrganizationsLocationPeople

article

Magnetic domains and twin boundary movement of NiMnGa magnetic shape memory crystals

  • Mccord, Jeffrey
  • Lai, Yin Wai
  • Neudert, Andreas
  • Schäfer, Rudolf
  • Schultz, Ludwig
  • Kustov, Mikhail
Abstract

<p>Time-resolved metallographic optical microscopy techniques are used together with magnetic domain imaging to clarify the interaction between magnetic domains and twin boundary (TB) motion in magnetic shape memory NiMnGa single crystals. The magnetic field and stress induced magnetic domain formation is imaged by a magneto-optical indicator film technique. Reversible TB motion is visualized up to high actuation speeds. From domain observation at adjacent crystal surfaces the fundamental volume magnetic processes during strain and field induced TB motions are derived. For magnetic field induced structural reorientations a concurrent absence of magnetic domain wall motion is found. In contrast, for strain induced reorientations processes, a complete rearrangement of the magnetic domain structure by the moving TB is observed. Dynamic actuation experiments on TB motion reveal non-linear time effects on TB mobility. In addition to training effects, the maximum field induced strain increases with actuation speed. Both effects can be interpreted as the interaction of moving twin boundaries with local non-fixed defects. The summarized results provide key information for the understanding of the connection of magnetic and crystallographic domains in magnetic shape memory alloys and for the optimization of devices for future technical applications.</p>

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • mobility
  • experiment
  • defect
  • optical microscopy
  • magnetic domain wall
  • twin boundary