People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jilavi, Mohammad H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Sol–Gel Derived Nanocomposites for Optical Applications
Abstract
This paper provides a selective description of the development of nanostructured materials and the fabrication of the devices for optical applications. Examples are interference coatings, refractive and diffractive lenses, and macro- and micro-GRIN (graded refractive index) optical elements. Hybrid materials containing nanoparticles are of particular interest for the production of optical elements because, by exploiting the intrinsic solid state properties of the nanoparticles, nanocomposites can be tailored to exhibit the desired properties. A particular advantage of wet chemical processing lies in its great flexibility for depositing functional coatings.