People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dalby, Matthew J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Biosynthesis of Zinc Oxide Nanoparticles on l-Carnosine Biofunctionalized Polyacrylonitrile Nanofibers; a Biomimetic Wound Healing Materialcitations
- 2017Towards the cell-instructive bactericidal substrate: exploring the combination of nanotopographical features and integrin selective synthetic ligandscitations
- 2012Surface mobility regulates skeletal stem cell differentiationcitations
- 2010Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Fillercitations
Places of action
Organizations | Location | People |
---|
article
Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Filler
Abstract
Understanding tissue response to materials, to enable modulation and guided tissue regeneration is one of the main challenges in biomaterials science. Nowadays polymers, glasses, and metals dominate as biomaterials. Often native properties of those materials are not sufficient and there is a need to combine them, so as to modify and adjust their properties to the application. The primary aim of this study was to improve cell response to polymer (PLDL) using phosphate glass as filler (titanium doped phosphate glass). As a control beta-tricalcium phosphate (TCP) filler was used. Various concentrations of the filler were used (10-40 vol%). Wetting behavior, zeta-potentials, mechanical and thermal properties, and human cells response to the materials were evaluated. Results showed that with increase in glass filler loading wettability improved, zeta-potentials dropped, and increase in stiffness of materials was observed. Importantly cell culture experiments showed more developed and well spread cells on the samples with glass content up to 20 vol%. Cells responded much more positively to the glass filled samples than to TCP filled. However, expression of osteocalcin and osteopontin, proteins that indicate formation of the mineralized structures was positive for all the samples including pure PLDL. It was concluded that due to improved wetting behavior, lower zeta-potentials, and specific chemistry of the glass filler it was possible to alter cells response, improve bioactivity of the polymer, and vary mechanical properties.