People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knez, Daniel
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (48/48 displayed)
- 2024Nanoscale, surface-confined phase separation by electron beam induced oxidationcitations
- 2024Three-dimensional distribution of individual atoms in the channels of beryl
- 2024Three-dimensional distribution of individual atoms in the channels of berylcitations
- 2024Phase Transitions and Ion Transport in Lithium Iron Phosphate by Atomic‐Scale Analysis to Elucidate Insertion and Extraction Processes in Li‐Ion Batteriescitations
- 2024Challenges and advances regarding LiVPO4: From HR-STEM & EELS to novel scanning diffraction techniques
- 2024STEM exploration of 2DEG at TiO2/LaAlO3 interface
- 2024Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursorcitations
- 2024Pulsed Laser Deposition using high-power Nd:YAG laser source operating at its first harmonics
- 2024Atom by atom analysis of defect structures in doped STO
- 2023A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusioncitations
- 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
- 2023Visualizing cellulose chains with cryo scanning transmission electron microscopy
- 2023Phase analysis of (Li)FePO4 by selected area electron diffraction and integrated differential phase contrast imaging
- 2022Phase Analysis of (Li)FePO4 by Selected Area Electron Diffraction in Transmission Electron Microscopy
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO 3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Vanadium and Manganese Carbonyls as Precursors in Electron-Induced and Thermal Deposition Processes
- 2022Orbital mapping of the LaAlO3-TiO2 interface by STEM-EELS
- 2022Quantifying Ordering Phenomena at the Atomic Scale in Rare Earth Oxide Ceramics via EELS Elemental Mapping
- 2022In Situ Study of Nanoporosity Evolution during Dealloying AgAu and CoPd by Grazing-Incidence Small-Angle X-ray Scatteringcitations
- 2022In Situ Study of Nanoporosity Evolution during Dealloying AgAu and CoPd by Grazing-Incidence Small-Angle X-ray Scatteringcitations
- 2022Field induced oxygen vacancy migration in anatase thin films studied by in situ biasing TEM
- 2022Precursors for Direct-Write Nanofabrication with Electrons
- 2022Challenges in the characterization of complex nanomaterials with analytical STEM
- 2022Mixed-metal nanoparticlescitations
- 2022Focused Ion Beam vs Focused Electron Beam Deposition of Cobalt Silicide Nanostructures Using Single-Source Precursorscitations
- 2022A Lithium-Silicon Microbattery with Anode and Housing Directly Made from Semiconductor Grade Monocrystalline Sicitations
- 2021Post-processing paths for orbital mapping of rutile by STEM-EELS
- 2021Automatic indexing of two-dimensional patterns in reciprocal space
- 2021Pulsed laser deposition of oxide and metallic thin films by means of Nd:YAG laser source operating at its 1st harmonicscitations
- 2021The Impact of High-Tension on the Orbital Mapping of Rutile by STEM-EELS
- 2021Spectroscopic STEM imaging in 2D and 3D
- 2020Helium droplet assisted synthesis of plasmonic Ag@ZnO core@shell nanoparticlescitations
- 2020Tuning optical absorption of anatase thin lms across the visible/near-infrared spectral regioncitations
- 2020Study on Ca Segregation toward an Epitaxial Interface between Bismuth Ferrite and Strontium Titanatecitations
- 2020Ca segregation towards an in-plane compressive strain Bismuth Ferrite – Strontium Titanate interface
- 2020Unveiling Oxygen Vacancy Superstructures in Reduced Anatase Thin Filmscitations
- 2020Ultrashort XUV pulse absorption spectroscopy of partially oxidized cobalt nanoparticlescitations
- 2019Ultra-thin h-BN substrates for nanoscale plasmon spectroscopycitations
- 2019On the passivation of iron particles at the nanoscalecitations
- 2019The impact of swift electrons on the segregation of Ni-Au nanoalloyscitations
- 2019Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticlescitations
- 2019Atomic Structure Analysis of a Second Order Ruddlesden-Popper Ferrite-a High Resolution STEM Study
- 2018Stability of Core-Shell Nanoparticles for Catalysis at Elevated Temperaturescitations
- 2017Microstructure evolution and mechanical properties of hot deformed Mg9Al1Zn samples containing a friction stir processed zonecitations
- 2017Thermally induced breakup of metallic nanowirescitations
- 2017Inclusions in Si whiskers grown by Ni metal induced lateral crystallizationcitations
- 2016Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
Places of action
Organizations | Location | People |
---|
booksection
Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
Abstract
Metallic nanoparticles consisting of a few thousand atoms are of large interest for potential applications in different fields such as optics, catalysis or magnetism. Structure, shape and composition are the basic parameters responsible for their properties. To reveal these parameters in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope is challenging though [1–3], and the ultimate goal of resolving position and type of each single atom inside a material remains elusive. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets [4,5] (Figure 1a). Superfluid helium droplets represent a versatile, novel tool for designing such nanoparticles, allowing fine-tuned synthesis of pure or composite clusters for a wide range of materials. Using ultra-high vacuum conditions and getting on without solvents or additives compared with chemical synthesis, the method delivers high purity materials, which can be well controlled in terms of size and composition.Analytical TEM investigations reveal smaller clusters mainly consisting of a single silver core, surrounded by a gold shell, whereas larger clusters contain two or more silver grains embedded in a gold matrix [6] (Figure 1b&c). The measured transition between single- and double-core growth appears at a cluster size of about 5000 atoms and similar values are found when cluster agglomeration inside the He-droplet is simulated for the used process parameters [7] (Figure 1d). One cluster with two silver cores was analysed three-dimensionally for its atomic structure, shape and composition [6] (Figure 2). We identify gold- and silver-rich regions in three dimensions and we are able to estimate atomic positions inside the nanocluster. Two silver cores are visible as darker regions, separated by gold with a minimal thickness of 2–3 atomic layers. The cluster appears in a highly symmetric multiply twinned structure, shaped roughly as an icosahedron, which is structurally modified due to binding of the cluster to the surface. This work demonstrates estimation of atomic positions within nanoparticles in 3D without any prior information, while at the same time information about the local elemental composition is retrieved at near-atomic resolution. Our results give insight into the growth and deposition process of composite nanoclusters created in superfluid helium droplets. This understanding will allow fine-tuning of process parameters for optimizing nanoparticle properties.