Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Catalanotti, G.

  • Google
  • 56
  • 82
  • 2603

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (56/56 displayed)

  • 2023Resistance welding of carbon fibre reinforced PEKK by means of CNT webs8citations
  • 2021A methodology to generate design allowables of composite laminates using machine learning76citations
  • 2021A methodology to generate design allowables of composite laminates using machine learning76citations
  • 2021On the Stress Intensity Factor of cracks emanating from circular and elliptical holes in orthotropic plates7citations
  • 2020Compressive intralaminar fracture toughness and residual strength of 2D woven carbon fibre reinforced composites: New developments on using the size effect method19citations
  • 2020A case for Tsai's Modulus, an invariant-based approach to stiffness47citations
  • 2020High strain rate characterisation of intralaminar fracture toughness of GFRPs for longitudinal tension and compression failure14citations
  • 2020Micromechanical modelling of interlaminar damage propagation and migration2citations
  • 2020Micromechanical modelling of interlaminar damage propagation and migration2citations
  • 2020Micromechanical modelling of the longitudinal compressive and tensile failure of unidirectional composites47citations
  • 2020Thin-ply polymer composite materials: a review102citations
  • 2020Micromechanical modelling of the longitudinal compressive and tensile failure of unidirectional composites: the effect of fibre misalignment introduced via a stochastic process47citations
  • 2019Prediction of in situ strengths in composites: Some considerations29citations
  • 2019Simulation of failure in laminated polymer composites: building-block validation46citations
  • 2019Simulation of the Mechanical Response of Thin-Ply Composites: From Computational Micro-Mechanics to Structural Analysis65citations
  • 2018Determination of the crack resistance curve for intralaminar fiber tensile failure mode in polymer composites under high rate loading33citations
  • 2018Mechanical fastening of composite and composite-metal structures3citations
  • 2018A strategy to improve the structural performance of non-crimp fabric thin-ply laminates33citations
  • 2017Effect of tow thickness on the structural response of aerospace-grade spread-tow fabrics33citations
  • 2017The effect of through-thickness compressive stress on mode II interlaminar crack propagation:A computational micromechanics approach27citations
  • 2017The effect of through-thickness compressive stress on mode II interlaminar fracture toughness43citations
  • 2017Structural response of aerospace-grade thin-ply woven and non-crimp fabricscitations
  • 2017Fracture toughness and crack resistance curves for fiber compressive failure mode in polymer composites under high rate loading47citations
  • 2017The effect of through-thickness compressive stress on mode II interlaminar crack propagation: A computational micromechanics approach27citations
  • 2017The effect of through-thickness compressive stress on mode II interlaminar crack propagation27citations
  • 2016Selective ply-level hybridisation for improved notched response of composite laminates55citations
  • 2016Measuring the intralaminar crack resistance curve of fibre reinforced composites at extreme temperatures13citations
  • 2016Selective ply-level hybridisation for improved notched responsecitations
  • 2016Measurement of fracture toughness for fiber compressive failure mode of UD composites under high rate loadingcitations
  • 2016The Transverse Crack Tension test revisited: An experimental and numerical study18citations
  • 2016The Transverse Crack Tension test revisited18citations
  • 2015Three-dimensional invariant-based failure criteria for transversely isotropic fibre-reinforced composites16citations
  • 2015FRACTURE TOUGHNESS AND CRACK RESISTANCE CURVES IN THE LONGITUDINAL COMPRESSIVE FAILURE OF POLYMER COMPOSITEScitations
  • 2015A finite fracture mechanics model for the prediction of the notched response and large damage capability of composite laminates4citations
  • 2015Experimental evaluation of through-the-thickness stress distribution in transverse crack tension test samplescitations
  • 2015Three-dimensional invariant-based failure criteria for fibre-reinforced composites118citations
  • 2015Micro-mechanical analysis of the effect of ply thickness on the transverse compressive strength of polymer composites99citations
  • 2014Measurement of the compressive crack resistance curve of composites using the size effect law69citations
  • 2014Measurement of the intralaminar fracture toughness and R-curve of polymer composites laminates using the size effect lawcitations
  • 2014Large damage capability of non-crimp fabric thin-ply laminates39citations
  • 2014Micro-mechanical analysis of the in situ effect in polymer composite laminates150citations
  • 2014Determination of the mode I crack resistance curve of polymer composites using the size-effect law95citations
  • 2013A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates76citations
  • 2013Size effects on the tensile and compressive failure of notched composite laminates121citations
  • 2013Notched response of non-crimp fabric thin-ply laminates88citations
  • 2013Notched response of non-crimp fabric thin-ply laminates: Analysis methods41citations
  • 2013Three-dimensional failure criteria for fiber-reinforced laminates154citations
  • 2013Modeling the inelastic deformation and fracture of polymer composites-Part II: Smeared crack model128citations
  • 2012A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates188citations
  • 2011On the relation between the mode I fracture toughness of a composite laminate and that of a 0 degrees ply: Analytical model and experimental validation51citations
  • 2011Experimental and numerical study of fastener pull-through failure in GFRP laminates24citations
  • 2011Fastener pull-through failure in GFRP laminatescitations
  • 2011Analytical model for the prediction of the fracture toughness of multidirectional laminatescitations
  • 2011An efficient design method for multi-material bolted joints used in the railway industry10citations
  • 2010Measurement of resistance curves in the longitudinal failure of composites using digital image correlation168citations
  • 2007A continuum damage model to simulate failure in composite plates under uniaxial compressioncitations

Places of action

Chart of shared publication
Russello, M.
1 / 1 shared
Hawkins, Sc
1 / 2 shared
Falzon, Bg
1 / 3 shared
Furtado, Carolina
5 / 24 shared
Camanho, Pp
39 / 229 shared
Pereira, Lf
1 / 2 shared
Bessa, Ma
1 / 5 shared
Salgado, M.
2 / 7 shared
Arteiro, A.
25 / 54 shared
Otero, F.
2 / 13 shared
Tavares, Rp
1 / 12 shared
Bessa, M. A.
3 / 7 shared
Gomes Pereira, L. P.
1 / 1 shared
Tavares, R. P.
1 / 3 shared
Camanho, P. P.
1 / 13 shared
Furtado, C.
2 / 14 shared
Salgado, Rm
1 / 1 shared
Varandas, L. F.
4 / 4 shared
Foster, S.
1 / 2 shared
Dalli, D.
1 / 3 shared
Falzon, B. G.
3 / 17 shared
Xavier, J.
17 / 35 shared
Kuhn, P.
4 / 6 shared
Koerber, H.
4 / 11 shared
Melro, Antonio
3 / 6 shared
Melro, António R.
1 / 6 shared
Tavares, Rodrigo
2 / 3 shared
Falzon, Brian G.
2 / 43 shared
Linde, P.
9 / 17 shared
Varandas, Luis Filipe
1 / 1 shared
Melro, A. R.
6 / 16 shared
Gray, Pj
1 / 2 shared
Wardle, Bl
1 / 13 shared
Reinoso, J.
1 / 28 shared
Ploeckl, M.
1 / 1 shared
Bessa, Miguel A.
2 / 5 shared
Scalici, T.
4 / 10 shared
Pitarresi, G.
4 / 12 shared
Pinto, R. F.
1 / 2 shared
Cidade, R.
1 / 1 shared
Valenza, A.
3 / 37 shared
Vogler, M.
3 / 8 shared
Melro, Ar
1 / 5 shared
Hayati, M.
1 / 1 shared
Mandi, S.
1 / 1 shared
Ercin, Gh
1 / 2 shared
Erçin, G. H.
2 / 3 shared
Mahdi, S.
2 / 6 shared
Marques, A. T.
3 / 34 shared
Rolfes, R.
1 / 28 shared
Ghys, P.
3 / 3 shared
Marques, At
2 / 33 shared
Dávila, C. G.
1 / 16 shared
Tumino, Davide
1 / 5 shared
Cappello, Francesco
1 / 5 shared
Chart of publication period
2023
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2007

Co-Authors (by relevance)

  • Russello, M.
  • Hawkins, Sc
  • Falzon, Bg
  • Furtado, Carolina
  • Camanho, Pp
  • Pereira, Lf
  • Bessa, Ma
  • Salgado, M.
  • Arteiro, A.
  • Otero, F.
  • Tavares, Rp
  • Bessa, M. A.
  • Gomes Pereira, L. P.
  • Tavares, R. P.
  • Camanho, P. P.
  • Furtado, C.
  • Salgado, Rm
  • Varandas, L. F.
  • Foster, S.
  • Dalli, D.
  • Falzon, B. G.
  • Xavier, J.
  • Kuhn, P.
  • Koerber, H.
  • Melro, Antonio
  • Melro, António R.
  • Tavares, Rodrigo
  • Falzon, Brian G.
  • Linde, P.
  • Varandas, Luis Filipe
  • Melro, A. R.
  • Gray, Pj
  • Wardle, Bl
  • Reinoso, J.
  • Ploeckl, M.
  • Bessa, Miguel A.
  • Scalici, T.
  • Pitarresi, G.
  • Pinto, R. F.
  • Cidade, R.
  • Valenza, A.
  • Vogler, M.
  • Melro, Ar
  • Hayati, M.
  • Mandi, S.
  • Ercin, Gh
  • Erçin, G. H.
  • Mahdi, S.
  • Marques, A. T.
  • Rolfes, R.
  • Ghys, P.
  • Marques, At
  • Dávila, C. G.
  • Tumino, Davide
  • Cappello, Francesco
OrganizationsLocationPeople

booksection

Mechanical fastening of composite and composite-metal structures

  • Camanho, Pp
  • Catalanotti, G.
Abstract

The concept of Friction Riveting (FricRiveting) is based on the principles of mechanical fastening and friction welding, where joining energy in the form of frictional heat is supplied by the rotational movement of one of the joining partners (normally a cylindrical rivet). This technique allows for the manufacture of joints with high mechanical performance. FricRiveting has the potential to fulfill the technology and market needs of polymer-metal multimaterial structures. Process parameters and variables in FricRiveting are analogous to the ones found in friction welding and spin welding, due to their process similarities. Parameters can be understood as controllable input data while variables as resulting process outputs. FricRiveting can be decomposed in terms of process phases related to different stages of heat generation and rivet axial displacement over joining time (JT). This analogy is typically adopted in other friction-based joining techniques such as in spin welding of plastics. © 2018 John Wiley & Sons, Inc.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • composite
  • joining