People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ward, Mark
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2021Metallurgical modelling of Ti-6Al-4V for welding applicationscitations
- 2020Microstructural modelling of thermally-driven β grain growth, lamellae & martensite in Ti-6Al-4Vcitations
- 2019Microstructural modelling of the α+β phase in Ti-6Al-4V:citations
- 2019Modelling of the heat-affected and thermomechanically affected zones in a Ti-6Al-4V inertia friction weldcitations
- 2017Study of as-cast structure formation in Titanium alloy
- 2017Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloyscitations
- 2016Porosity formation in laser welded Ti-6Al-4V Alloy: modelling and validation
- 2016Linking a CFD and FE analysis for Welding Simulations in Ti-6Al-4V
- 2016Calculating the energy required to undergo the conditioning phase of a titanium alloy inertia friction weldcitations
- 2016An integrated modelling approach for predicting process maps of residual stress and distortion in a laser weldcitations
- 2016Defect formation and its mitigation in selective laser melting of high γ′ Ni-base superalloyscitations
- 2016Technology scale-up in metal additive manufacture
- 2015Linear friction welding of Ti6Al4V: experiments and modellingcitations
- 2015Validation of a Model of Linear Friction Welding of Ti6Al4V by Considering Welds of Different Sizescitations
- 2015On the role of melt flow into the surface structure and porosity development during selective laser meltingcitations
- 2015Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser meltingcitations
- 2013Determination of the magnitude of interfacial air-gap and heat transfer during ingot casting into permanent metal moulds by numerical and experimental techniquescitations
- 2013A multiscale 3D model of the Vacuum Arc remelting processcitations
- 2012A multi-scale 3D model of the vacuum arc remelting processcitations
- 2011Linear friction welding of Ti-6Al-4V: Modelling and validationcitations
- 2010Microstructure and corrosion of Pd-modified Ti alloys produced by powder metallurgycitations
- 2009An analysis of the use of magnetic source tomography to measure the spatial distribution of electric current during vacuum arc remeltingcitations
- 2008Effect of Variation in Process Parameters on the Formation of Freckle in INCONEL 718 by Vacuum Arc Remeltingcitations
- 2004The effect of VAR process parameters on white spot formation in INCONEL 718citations
- 2004A simple transient numerical model for heat transfer and shape evolution during the production of rings by centrifugal spray depositioncitations
Places of action
Organizations | Location | People |
---|
document
Defect formation and its mitigation in selective laser melting of high γ′ Ni-base superalloys
Abstract
<p>This report focuses on the microstructural causes of cracking in CM247LC processed using Selective Laser Melting (SLM), as well as other phenomena that may increase the likelihood for cracking. Observations using high-speed imaging showed that material was lost as both vapor and discrete particles under some conditions, which may be a source of the Al-enriched particles found in recycled powder. The local chemical heterogeneities arising from such Al-rich particles may then contribute to crack and pore formation. Transmission Electron Microscopy (TEM) investigations for the as-built microstructure showed "cell-like" structures within the columnar grains, Hf-rich precipitates were found at "cell-like" structures and grain boundaries, and there were associated high dislocation densities at these boundaries acting as crack initiation points in the presence of residual stresses. Post-process Hot Isostatic Pressing (HIP) was used to heal the cracks and pores that form during processing. It was found to lead to pronounced recrystallization, as expected from the high dislocation density. Various routes for defect mitigation are discussed.</p>