People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michalski, Andrzej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2019Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sinteringcitations
- 2018Structure and mechanical properties of TiB 2 /TiC – Ni composites fabricated by pulse plasma sintering methodcitations
- 2017Design of interfacial Cr 3 C 2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applicationscitations
- 2011W/steel joint fabrication using the pulse plasma sintering (PPS) methodcitations
- 2010Nanocrystalline WC with non-toxic Fe-Mn bindercitations
- 2010Properties of WCCo/diamond composites produced PPS method intended for drill bits for machining of building stonescitations
- 2008Heat Sink Materials Processing by Pulse Plasma Sinteringcitations
- 2007Nanocrystalline cemented carbides sintered by the pulse plasma methodcitations
- 2006Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Methodcitations
- 2006Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Techniquecitations
- 2006NiAl–Al2O3 composites produced by pulse plasma sintering with the participation of the SHS reactioncitations
- 2004Phase transformations in ball milled AISI 316L stainless steel powder and the microstructure of the steel obtained by its sintering
- 2002Fabrication, structure and consolidation of NiAl-Al <inf>2</inf> O <inf>3</inf> mechanically alloyed nanocomposite powders
Places of action
Organizations | Location | People |
---|
booksection
Properties of WCCo/diamond composites produced PPS method intended for drill bits for machining of building stones
Abstract
The paper presents the application of the pulse plasma sintering (PPS) method in the field of diamond composites sintered under the conditions of thermodynamic instability of diamond for the manufacture of tools intended for machining building stone. The WCCo/diamond composites containing 30 vol % of diamond particles were produced using a mixture of submicron WC6Co (wt %). Thanks to PPS densification conditions, dense sinters with a strong bond between the diamond particles and the sintered carbide matrix have been obtained. Examinations of the phase composition and observations of the microstructure did not show graphitization of diamond. The SEM photographs revealed transcrystalline fractures of the diamond particles. The presence of transcrystalline fractures of the diamond particles indicates that the bonding forces between the diamond particles and the WCCo matrix exceed the strength of the diamond particles. The paper compares the percent number of transcrystalline fractures of diamond particles in dependence on the densification parameters.