People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
George, Matthieu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Bridging steady-state and stick-slip fracture propagation in glassy polymerscitations
- 2021Bridging steady-state and stick-slip fracture propagation in glassy polymerscitations
- 2020Microstructure Characterization of Oceanic Polyethylene Debriscitations
- 2020Microstructure Characterization of Oceanic Polyethylene Debriscitations
- 2019A comparative study of degradation mechanisms of PBSA and PHBV under laboratoryscale composting conditionscitations
- 2019New Insights For The Fragmentation Of Plastics Into Microplastics In The Ocean
- 2019Experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles.citations
- 2018In Situ AFM Investigations and Fracture Mechanics Modeling of Slow Fracture Propagation in Oxide and Polymer Glasses.citations
- 2018In situ AFM investigation of slow crack propagation mechanisms in a glassy polymercitations
- 2016Bottom-up model for understanding the effects of wheat endosperm microstructure on its mechanical strengthcitations
- 2015Multiscale investigation of stress-corrosion crack propagation mechanisms in oxide glassescitations
- 2014Numerical modeling of wheat fractionation role of starch volume fraction
- 2013Nano-mechanical properties of starch and gluten biopolymers from atomic force microscopycitations
- 2013Adhesion properties of wheat-based particlescitations
- 2011Quantitative Analysis of Crack Closure Driven by Laplace Pressure in Silica Glasscitations
- 2009Mechanical effect of capillary forces in the crack tip of a DCDC specimen
- 2008Dynamic condensation of water at crack tips in fused silica glasscitations
- 2007FORMATION AND EVOLUTION OF A CONFINED LIQUID CONDENSATE AT THE CRACK TIP IN GLASSES
- 2007Effect of stress gradient at the vicinity of a crack tip on ionic diffusion in silicate glasses : an AFM study
- 2006FORMATION AND EVOLUTION OF A CONFINED LIQUID CONDENSATE AT THE CRACK TIP IN GLASSES
- 2006Effect of stress gradient at the vicinity of a crack tip on ionic diffusion in silicate glasses : an AFM study
Places of action
Organizations | Location | People |
---|
document
FORMATION AND EVOLUTION OF A CONFINED LIQUID CONDENSATE AT THE CRACK TIP IN GLASSES
Abstract
Crack propagation in oxide glasses at low crack velocities is controlled by stress corrosion. Proper knowledge of the crack tip chemical environment is thus crucial to understand the slow fracture process of these materials. The formation of a liquid condensate in the confined area of the crack tip is theoretically expected and is classically mentioned to explain specific behavior during the crack propagation. Since this condensate is of the nanometer scale and cannot be traced post mortem, it is extremely difficult to observe. This paper reports the experimental evidences of the presence of a liquid condensate at the tip of a crack propagating by stress corrosion in silica glass. The observation has been performed in situ under carefully controlled atmosphere through phase imaging by atomic force microscopy (AFM). The evolution of the condensate has been followed as a function of the relative humidity. The impact of those evidences of the liquid condensate will be discussed and information on its size or evolution kinetic will be reported.