Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Yuan

  • Google
  • 5
  • 20
  • 273

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019Utilizing low-cost natural waste for the removal of pharmaceuticals from water108citations
  • 2018Spinning disk atomization14citations
  • 2017Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Moon42citations
  • 2017Tuning the Rectification Ratio by Changing the Electronic Nature (Open-Shell and Closed-Shell) in Donor–Acceptor Self-Assembled Monolayers55citations
  • 2016Polypyrrole-modified graphene sheet nanocomposites as new efficient materials for supercapacitors54citations

Places of action

Chart of shared publication
Taggart, Mark A.
1 / 1 shared
Zhang, Zulin
1 / 1 shared
Lu, Yonglong
1 / 1 shared
Gibb, Stuart
1 / 1 shared
Pap, Sabolc
1 / 2 shared
Mckenzie, Craig
1 / 4 shared
Sisoev, Grigory
1 / 1 shared
Shikhmurzaev, Yulii
1 / 2 shared
Nijhuis, Christian A.
1 / 8 shared
Souto Salom, Manuel
1 / 1 shared
Morales, Dayana C.
1 / 1 shared
Li, Jiang
1 / 4 shared
Veciana, Jaume
1 / 12 shared
Ratera, Immaculada
1 / 2 shared
Louarn, Guy
1 / 9 shared
Miomandre, Fabien
1 / 6 shared
Galmiche, Laurent
1 / 4 shared
Audebert, Pierre
1 / 11 shared
Aubert, Pierre
1 / 1 shared
Alain-Rizzo, Valérie
1 / 1 shared
Chart of publication period
2019
2018
2017
2016

Co-Authors (by relevance)

  • Taggart, Mark A.
  • Zhang, Zulin
  • Lu, Yonglong
  • Gibb, Stuart
  • Pap, Sabolc
  • Mckenzie, Craig
  • Sisoev, Grigory
  • Shikhmurzaev, Yulii
  • Nijhuis, Christian A.
  • Souto Salom, Manuel
  • Morales, Dayana C.
  • Li, Jiang
  • Veciana, Jaume
  • Ratera, Immaculada
  • Louarn, Guy
  • Miomandre, Fabien
  • Galmiche, Laurent
  • Audebert, Pierre
  • Aubert, Pierre
  • Alain-Rizzo, Valérie
OrganizationsLocationPeople

article

Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Moon

  • Li, Yuan
Abstract

<jats:title>Abstract</jats:title><jats:p>Carbon contents in reduced Martian basalts at graphite saturation were experimentally studied at 1400–1550°C, 1–2 GPa, and log<jats:italic>f</jats:italic>O<jats:sub>2</jats:sub> of IW − 0.4 to IW + 1.5 (IW denotes the Fe‐FeO buffer). The results show that carbon solubility in Martian basalts, determined by secondary ion mass spectrometry, is 20 to 1400 ppm, increasing with increasing <jats:italic>f</jats:italic>O<jats:sub>2</jats:sub>. Raman and Fourier transform infrared spectroscopic measurements on the quenched silicate glasses show that the dominant carbon species in Martian basalts is carbonate (CO<jats:sub>3</jats:sub><jats:sup>2−</jats:sup>). The experimental data generated here were combined with literature data on similar graphite‐saturated carbon solubility for mafic‐ultramafic compositions to develop an empirical model that can be used to predict carbon content of graphite‐saturated reduced basalts at vapor‐absent conditions: <jats:disp-formula> <jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" position="anchor" xlink:href="graphic/jgre20688-math-0001.png"><jats:alt-text>urn:x-wiley:21699097:media:jgre20688:jgre20688-math-0001</jats:alt-text></jats:graphic> </jats:disp-formula> <jats:disp-formula> <jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" position="anchor" xlink:href="graphic/jgre20688-math-0002.png"><jats:alt-text>urn:x-wiley:21699097:media:jgre20688:jgre20688-math-0002</jats:alt-text></jats:graphic> </jats:disp-formula>in which <jats:italic>T</jats:italic> is temperature in K, <jats:italic>P</jats:italic> is pressure in GPa, <jats:styled-content><jats:italic>X</jats:italic><jats:sub>H2O</jats:sub></jats:styled-content> is mole fraction of water in basalts, <jats:styled-content>ΔIW</jats:styled-content> is the oxygen fugacity relative to the IW buffer, and <jats:styled-content>NBO/<jats:italic>T</jats:italic> = 2 total <jats:italic>O</jats:italic>/<jats:italic>T</jats:italic> − 4 (<jats:italic>T</jats:italic> = Si + Ti + Al + Cr + P)</jats:styled-content>. This model was applied to predict carbon content in graphite‐saturated mantle melts of the Mercury, Mars, and the Moon. The results show that graphite may be consumed during the production and extraction of some Martian basalts, and CO<jats:sub>2</jats:sub> released by volcanism on Mars cannot be an efficient greenhouse gas in the early Mars. The lunar mantle carbon may be one of the main propellant driving the fire‐fountain eruption on the Moon; however, the Mercurian mantle carbon may not be an important propellant for the explosive eruption on Mercury.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • Oxygen
  • extraction
  • melt
  • glass
  • glass
  • spectrometry
  • degassing
  • secondary ion mass spectrometry
  • carbon content
  • Mercury