People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Yuan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Utilizing low-cost natural waste for the removal of pharmaceuticals from watercitations
- 2018Spinning disk atomizationcitations
- 2017Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Mooncitations
- 2017Tuning the Rectification Ratio by Changing the Electronic Nature (Open-Shell and Closed-Shell) in Donor–Acceptor Self-Assembled Monolayerscitations
- 2016Polypyrrole-modified graphene sheet nanocomposites as new efficient materials for supercapacitorscitations
Places of action
Organizations | Location | People |
---|
article
Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Moon
Abstract
<jats:title>Abstract</jats:title><jats:p>Carbon contents in reduced Martian basalts at graphite saturation were experimentally studied at 1400–1550°C, 1–2 GPa, and log<jats:italic>f</jats:italic>O<jats:sub>2</jats:sub> of IW − 0.4 to IW + 1.5 (IW denotes the Fe‐FeO buffer). The results show that carbon solubility in Martian basalts, determined by secondary ion mass spectrometry, is 20 to 1400 ppm, increasing with increasing <jats:italic>f</jats:italic>O<jats:sub>2</jats:sub>. Raman and Fourier transform infrared spectroscopic measurements on the quenched silicate glasses show that the dominant carbon species in Martian basalts is carbonate (CO<jats:sub>3</jats:sub><jats:sup>2−</jats:sup>). The experimental data generated here were combined with literature data on similar graphite‐saturated carbon solubility for mafic‐ultramafic compositions to develop an empirical model that can be used to predict carbon content of graphite‐saturated reduced basalts at vapor‐absent conditions: <jats:disp-formula> <jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" position="anchor" xlink:href="graphic/jgre20688-math-0001.png"><jats:alt-text>urn:x-wiley:21699097:media:jgre20688:jgre20688-math-0001</jats:alt-text></jats:graphic> </jats:disp-formula> <jats:disp-formula> <jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" position="anchor" xlink:href="graphic/jgre20688-math-0002.png"><jats:alt-text>urn:x-wiley:21699097:media:jgre20688:jgre20688-math-0002</jats:alt-text></jats:graphic> </jats:disp-formula>in which <jats:italic>T</jats:italic> is temperature in K, <jats:italic>P</jats:italic> is pressure in GPa, <jats:styled-content><jats:italic>X</jats:italic><jats:sub>H2O</jats:sub></jats:styled-content> is mole fraction of water in basalts, <jats:styled-content>ΔIW</jats:styled-content> is the oxygen fugacity relative to the IW buffer, and <jats:styled-content>NBO/<jats:italic>T</jats:italic> = 2 total <jats:italic>O</jats:italic>/<jats:italic>T</jats:italic> − 4 (<jats:italic>T</jats:italic> = Si + Ti + Al + Cr + P)</jats:styled-content>. This model was applied to predict carbon content in graphite‐saturated mantle melts of the Mercury, Mars, and the Moon. The results show that graphite may be consumed during the production and extraction of some Martian basalts, and CO<jats:sub>2</jats:sub> released by volcanism on Mars cannot be an efficient greenhouse gas in the early Mars. The lunar mantle carbon may be one of the main propellant driving the fire‐fountain eruption on the Moon; however, the Mercurian mantle carbon may not be an important propellant for the explosive eruption on Mercury.</jats:p>