Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parsons, Andrew

  • Google
  • 4
  • 28
  • 108

University of Plymouth

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Experimental observation of a new attenuation mechanism in hcp-metals that may operate in the Earth's inner corecitations
  • 2019Ga and Ce ion-doped phosphate glass fibres with antibacterial properties and their composite for wound healing applications47citations
  • 2018Chitosan as a coupling agent for phosphate glass fibre/polycaprolactone composites8citations
  • 2016Thermo‐kinematic evolution of the <scp>A</scp>nnapurna‐<scp>D</scp>haulagiri <scp>H</scp>imalaya, central <scp>N</scp>epal: The <scp>C</scp>omposite <scp>O</scp>rogenic <scp>S</scp>ystem53citations

Places of action

Chart of shared publication
Stackhouse, Stephen
1 / 3 shared
Lord, Oliver T.
1 / 1 shared
Whitaker, Matthew L.
1 / 1 shared
Michalik, Stefan
1 / 14 shared
Wheeler, John
1 / 3 shared
Lloyd, Geoffrey E.
1 / 2 shared
Hunt, Simon A.
1 / 6 shared
Fenech, Danielle M.
1 / 1 shared
Armstrong, Lora S.
1 / 2 shared
Walker, Andrew M.
1 / 7 shared
Schardong, Lewis
1 / 2 shared
Detsch, Rainer
1 / 191 shared
Goldmann, Wolfgang H.
1 / 12 shared
Boccaccini, Ar
1 / 302 shared
Ahmed, Ifty
2 / 28 shared
Cresswell, Mark
1 / 7 shared
Łapa, Agata
1 / 2 shared
Jackson, Phil
1 / 5 shared
Campbell, Ian
1 / 5 shared
Tan, Chao
1 / 2 shared
Sharmin, Nusrat
1 / 11 shared
Rudd, Chris
1 / 1 shared
Zhang, Junxiao
1 / 1 shared
Chen, Wanru
1 / 2 shared
Phillips, R. J.
1 / 1 shared
Searle, M. P.
1 / 1 shared
Law, R. D.
1 / 1 shared
Lloyd, G. E.
1 / 1 shared
Chart of publication period
2024
2019
2018
2016

Co-Authors (by relevance)

  • Stackhouse, Stephen
  • Lord, Oliver T.
  • Whitaker, Matthew L.
  • Michalik, Stefan
  • Wheeler, John
  • Lloyd, Geoffrey E.
  • Hunt, Simon A.
  • Fenech, Danielle M.
  • Armstrong, Lora S.
  • Walker, Andrew M.
  • Schardong, Lewis
  • Detsch, Rainer
  • Goldmann, Wolfgang H.
  • Boccaccini, Ar
  • Ahmed, Ifty
  • Cresswell, Mark
  • Łapa, Agata
  • Jackson, Phil
  • Campbell, Ian
  • Tan, Chao
  • Sharmin, Nusrat
  • Rudd, Chris
  • Zhang, Junxiao
  • Chen, Wanru
  • Phillips, R. J.
  • Searle, M. P.
  • Law, R. D.
  • Lloyd, G. E.
OrganizationsLocationPeople

article

Thermo‐kinematic evolution of the <scp>A</scp>nnapurna‐<scp>D</scp>haulagiri <scp>H</scp>imalaya, central <scp>N</scp>epal: The <scp>C</scp>omposite <scp>O</scp>rogenic <scp>S</scp>ystem

  • Phillips, R. J.
  • Searle, M. P.
  • Law, R. D.
  • Lloyd, G. E.
  • Parsons, Andrew
Abstract

&lt;jats:title&gt;Abstract&lt;/jats:title&gt;&lt;jats:p&gt;The Himalayan orogen represents a “Composite Orogenic System” in which channel flow, wedge extrusion, and thrust stacking operate in separate “Orogenic Domains” with distinct rheologies and crustal positions. We analyze 104 samples from the metamorphic core (Greater Himalayan Sequence, GHS) and bounding units of the Annapurna‐Dhaulagiri Himalaya, central Nepal. Optical microscopy and electron backscatter diffraction (EBSD) analyses provide a record of deformation microstructures and an indication of active crystal slip systems, strain geometries, and deformation temperatures. These data, combined with existing thermobarometry and geochronology data are used to construct detailed deformation temperature profiles for the GHS. The profiles define a three‐stage thermokinematic evolution from midcrustal channel flow (Stage 1, &amp;gt;700°C to 550–650°C), to rigid wedge extrusion (Stage 2, 400–600°C) and duplexing (Stage 3, &amp;lt;280–400°C). These tectonic processes are not mutually exclusive, but are confined to separate rheologically distinct Orogenic Domains that form the modular components of a Composite Orogenic System. These Orogenic Domains may be active at the same time at different depths/positions within the orogen. The thermokinematic evolution of the Annapurna‐Dhaulagiri Himalaya describes the migration of the GHS through these Orogenic Domains and reflects the spatial and temporal variability in rheological boundary conditions that govern orogenic systems.&lt;/jats:p&gt;

Topics
  • microstructure
  • extrusion
  • composite
  • electron backscatter diffraction
  • optical microscopy