People | Locations | Statistics |
---|---|---|
Ferrari, A. |
| |
Schimpf, Christian |
| |
Dunser, M. |
| |
Thomas, Eric |
| |
Gecse, Zoltan |
| |
Tsrunchev, Peter |
| |
Della Ricca, Giuseppe |
| |
Cios, Grzegorz |
| |
Hohlmann, Marcus |
| |
Dudarev, A. |
| |
Mascagna, V. |
| |
Santimaria, Marco |
| |
Poudyal, Nabin |
| |
Piozzi, Antonella |
| |
Mørtsell, Eva Anne |
| |
Jin, S. |
| |
Noel, Cédric |
| |
Fino, Paolo |
| |
Mailley, Pascal |
| |
Meyer, Ernst |
| |
Zhang, Qi |
| |
Pfattner, Raphael | Brussels |
|
Kooi, Bart J. |
| |
Babuji, Adara |
| |
Pauporte, Thierry |
|
Lee, T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Probing spin correlations using angle-resolved photoemission in a coupled metallic/Mott insulator systemcitations
- 2018Adsorption Conformation and Lateral Registry of Cobalt Porphine on Cu(111)citations
- 2016Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carboncitations
Places of action
article
Adsorption Conformation and Lateral Registry of Cobalt Porphine on Cu(111)
Abstract
The tetrapyrrole macrocycle of porphine is the common core of all porphyrin molecules, an interesting class of π-conjugated molecules with relevance in natural and artificial systems. The functionality of porphines on a solid surface can be tailored by the central metal atom and its interaction with the substrate. In this study, we present a local adsorption geometry determination for cobalt porphine on Cu(111) by means of complementary scanning tunneling microscopy, high-resolution X-ray photoelectron spectroscopy, X-ray standing wave measurements, and density functional theory calculations. Specifically, the Co center was determined to be at an adsorption height of 2.25 ± 0.04 Å occupying a bridge site. The macrocycle adopts a moderate asymmetric saddle-shape conformation, with the two pyrrole groups that are aligned perpendicular to the densely packed direction of the Cu(111) surface tilted away from the surface plane.