People | Locations | Statistics |
---|---|---|
Ferrari, A. |
| |
Schimpf, Christian |
| |
Dunser, M. |
| |
Thomas, Eric |
| |
Gecse, Zoltan |
| |
Tsrunchev, Peter |
| |
Della Ricca, Giuseppe |
| |
Cios, Grzegorz |
| |
Hohlmann, Marcus |
| |
Dudarev, A. |
| |
Mascagna, V. |
| |
Santimaria, Marco |
| |
Poudyal, Nabin |
| |
Piozzi, Antonella |
| |
Mørtsell, Eva Anne |
| |
Jin, S. |
| |
Noel, Cédric |
| |
Fino, Paolo |
| |
Mailley, Pascal |
| |
Meyer, Ernst |
| |
Zhang, Qi |
| |
Pfattner, Raphael | Brussels |
|
Kooi, Bart J. |
| |
Babuji, Adara |
| |
Pauporte, Thierry |
|
Honig, Hauke
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
article
Silicon carbide formation in reactive silicon-carbon multilayers
Abstract
An alternative low thermal budget silicon carbide syntheses route is presented. The method is based on self-propagating high-temperature synthesis of binary silicon-carbon-based reactive multilayers. With this technique, it is possible to obtain cubic polycrystalline silicon carbide at relatively low annealing temperatures by a solid state reaction. The reaction starts above 600 °C. The transformation process proceeds in a four-step process. The reaction enthalpy was determined to be (-70 ± 4) kJ/mol.