People | Locations | Statistics |
---|---|---|
Ferrari, A. |
| |
Schimpf, Christian |
| |
Dunser, M. |
| |
Thomas, Eric |
| |
Gecse, Zoltan |
| |
Tsrunchev, Peter |
| |
Della Ricca, Giuseppe |
| |
Cios, Grzegorz |
| |
Hohlmann, Marcus |
| |
Dudarev, A. |
| |
Mascagna, V. |
| |
Santimaria, Marco |
| |
Poudyal, Nabin |
| |
Piozzi, Antonella |
| |
Mørtsell, Eva Anne |
| |
Jin, S. |
| |
Noel, Cédric |
| |
Fino, Paolo |
| |
Mailley, Pascal |
| |
Meyer, Ernst |
| |
Zhang, Qi |
| |
Pfattner, Raphael | Brussels |
|
Kooi, Bart J. |
| |
Babuji, Adara |
| |
Pauporte, Thierry |
|
Halle, T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2018Precipitation behavior and corrosion resistance of nickel-free, high-nitrogen austenitic stainless steels
- 2018Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542citations
- 2018SD effect in martensitic stainless steel under Q&P heat treatment condition
- 2018Reversed austenite for enhancing ductility of martensitic stainless steelcitations
- 2018Heat treatment and corrosion resistance of cutlery
- 2018Einfluss der Wärmebehandlung auf Mikrostruktur und Korrosionsverhalten kohlenstoffhaltiger nichtrostender Stähle
- 2017Einfluss der Wärmebehandlung auf die Korrosionsbeständigkeit von Schneidwarencitations
- 2017Reversed austenite for enhancing ductility of martensitic stainless steelcitations
- 2017Gefüge- und Phasenanalyse biokompatibler Co-Cr-Mo-Legierung
- 2017Einfluss der Abkühlgeschwindigkeit auf die Neigung zur Chromverarmung martensitischer nichtrostender Stähle
- 2016Influence of nitrogen on the corrosion resistance of martensitic stainless steelscitations
- 2016Einfluss von Stickstoff auf Mikrostruktur und Korrosionsverhalten martensitischer nichtrostender Stähle
- 2014Influence of precipitates on low-cycle fatigue and crack growth behavior in an ultrafine-grained aluminum alloycitations
- 2014An experimental and numerical investigation of different shear test configurations for sheet metal characterizationcitations
- 2011Manufacture of a beta-titanium hollow shaft by incremental formingcitations
- 2010Cyclic behavior and microstructural stability of ultrafine-grained AA6060 under strain-controlled fatiguecitations
Places of action
article
Manufacture of a beta-titanium hollow shaft by incremental forming
Abstract
S.227-232 ; Excellent mechanical properties and corrosion resistance combined with low weight qualify b-titanium materials for lightweight applications in aviation, automotive and energy engineering. Thus far, actual applications of these materials have been limited due to high material costs and limited processing knowledge. One approach for developing resource-efficient manufacturing methods is the application of incremental forming methods. This article focuses on the development of the incremental spin extrusion process, which creates hollow profiles from solid bars. This method allows hollow shape manufacturing with a much higher flexibility than other forming methods and a significantly improved material utilization in comparison to machining methods, such as deep hole drilling. Beta-titanium alloys basically have very good cold forming suitability and the resulting material properties can be controlled. The application of incremental forming methods with high hydrostatic compressive stress is a promising manufacturing approach. The b-titanium Ti-10V-2Fe-3Al material has an excellent combination of the properties strength, ductility and fatigue strength. In order to utilize these properties the forming conditions and the temperature control need to be optimized. The investigations show that the Ti-10V-2Fe-3Al material can be formed only in a narrow semi-hot forming temperature window. The paper describes the investigation and presents results on the design of partial forming process sequences, forming properties, microstructure formation and failure prevention. The process design objective is a very fine microstructure with a homogeneous secondary a-phase and very small grained b-phase. ; 5 ; Nr.3